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Introduction

Since its introduction by Von Neumann in 1929, the notion of amenability became
a central theme of research in geometric group theory. It admits a wide variety of
equivalent characterizations, and links group theory to various areas of mathematics,
such as geometry, functional analysis, or probability theory.

In 1959, Harry Kesten established [8] a major result in the field, proving that
amenability of a group relates in a deep manner to the behaviour of random walks
on the group. Namely, he proved that a group is amenable if and only if the return
probabilities at the identity of the group decrease slower than an exponential.

In the following decade, Harry Furstenberg realized that amenability had also
something to do with the behaviour of random walks "at infinity". This is the start-
ing point of what is called boundary theory, a field in which a lot of progress have
been made in the last fifty years. In the early 80’s, Kaimanovich and Vershik proved
another reformulation of what it means for a group to be amenable. More precisely,
they showed that a (countable) group is amenable if and only if it carries a probability
measure such that the associated Poisson-Furstenberg boundary is trivial.

The goal of this project is to provide and understand the proofs of these two re-
sults, by developing the adapted framework. In Section 1, we recall basic facts about
bounded linear operators on Hilbert spaces. They will be widely used in Section 2, to
obtain an intermediate characterization of amenability, and to study simple random
walks on finitely generated groups. We then establish Kesten’s result, and we compute
explicitely the spectral radius for simple random walks on free groups. In Section 3,
we introduce the basics of boundary theory. We define harmonic functions on groups
and the Liouville property. We then introduce the Poisson boundary, whose existence
and properties are however admitted. The bridge between this space and harmonic
functions on the group is the Poisson transform, introduced in subsection 3.3.

Two appendices are added. The first one aims at complete Section 1, and provides
a proof of Riesz representation theorem. The second establishes a theorem of conver-
gence for bounded martingales, which will be a crucial tool at our disposal to construct
an inverse to the Poisson transform.
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1. Hilbert spaces

In this first part, we introduce complex Hilbert spaces, and bounded linear opera-
tors on Hilbert spaces. We gather several useful results that will be used in our proof
of Kesten’s theorem.

1.1 Complex Hilbert spaces

Definition 1.1. Let H be a complex vector space.
A hermitian inner product on H is a map

⟨·, ·⟩ : H ×H −→ ℂ

(𝑥, 𝑦) ↦−→ ⟨𝑥, 𝑦⟩

such that

(i) ⟨𝜆𝑥 + 𝜇𝑦, 𝑧⟩ = 𝜆⟨𝑥, 𝑧⟩ + 𝜇⟨𝑦, 𝑧⟩, for all 𝑥, 𝑦, 𝑧 ∈ H , 𝜆, 𝜇 ∈ ℂ.

(ii) ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩, for all 𝑥, 𝑦 ∈ H .

(iii) ⟨𝑥, 𝑥⟩ ≥ 0 for all 𝑥 ∈ H , and ⟨𝑥, 𝑥⟩ = 0 implies 𝑥 = 0.

When H is equipped with a hermitian inner product, the pair (H , ⟨·, ·⟩) is called a
pre-Hilbert space.

A priori, for 𝑥 ∈ H , ⟨𝑥, 𝑥⟩ is a complex number, and its sign is undefined. However
⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑥⟩ by (ii), so ⟨𝑥, 𝑥⟩ is in fact a real number. Also, the above properties
together imply

⟨𝑥,𝜆𝑦 + 𝜇𝑧⟩ = ⟨𝜆𝑦 + 𝜇𝑧, 𝑥⟩ = 𝜆⟨𝑦, 𝑥⟩ + 𝜇⟨𝑧, 𝑥⟩ = 𝜆⟨𝑥, 𝑦⟩ + 𝜇⟨𝑥, 𝑧⟩

for all 𝑥, 𝑦, 𝑧 ∈ H , 𝜆, 𝜇 ∈ ℂ. Lastly, for the special case 𝜆 = 𝜇 = 0 in (i), we get
⟨0, 𝑥⟩ = ⟨𝑥, 0⟩ = 0 for all 𝑥 ∈ H . In particular, ⟨𝑥, 𝑥⟩ = 0 if and only if 𝑥 = 0.

The most important examples are the following.

Example 1.2. (i) The space of complex numbers H = ℂ, equipped with the inner
product ⟨𝑥, 𝑦⟩ ··= 𝑥𝑦, is a pre-Hilbert space. More generally, the space ℂ𝑛 with the
inner product defined as

⟨𝑥, 𝑦⟩ ··=
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

for all 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ ℂ𝑛, is a pre-Hilbert space.

8
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(ii) Fix (𝑋,A, 𝜇) a measure space, and let H = 𝐿2(𝑋,A, 𝜇). For 𝑓 , 𝑔 ∈ H , the formula

⟨𝑓 , 𝑔⟩ ··=
∫
𝑋

𝑓 (𝑥)𝑔(𝑥) d𝜇(𝑥)

defines a hermitian inner product on H . If 𝑋 is countable, we denote this space ℓ 2(𝑋)
rather than 𝐿2(𝑋,A, 𝜇).

Any space H with an inner product ⟨·, ·⟩ can be turned into a normed space, by
setting ∥𝑥∥ ··=

√︁
⟨𝑥, 𝑥⟩. Indeed, the latter is well defined since ⟨𝑥, 𝑥⟩ ≥ 0 for all 𝑥 ∈ H ,

and ∥𝑥∥ = 0 if and only if 𝑥 = 0. Moreover, for all 𝑥 ∈ H and 𝜆 ∈ H , we have

∥𝜆𝑥∥ =
√︁
⟨𝜆𝑥,𝜆𝑥⟩ =

√︃
𝜆𝜆⟨𝑥, 𝑥⟩ = |𝜆 |∥𝑥∥.

Then, we are left to show the triangle inequality. This relies on the Cauchy-Schwarz
inequality, of which it is difficult to underestimate the importance.

Lemma 1.3. Let (H , ⟨·, ·⟩) be a pre-Hilbert space.
Then, for all 𝑥, 𝑦 ∈ H , one has

|⟨𝑥, 𝑦⟩| ≤ ∥𝑥∥∥𝑦∥

where ∥ · ∥ ··=
√︁
⟨·, ·⟩.

Proof. The result is clear if 𝑥 = 0 or 𝑦 = 0. Then we may assume that 𝑥, 𝑦 ≠ 0 and, up
to scaling, we can take ∥𝑥∥ = ∥𝑦∥ = 1. We start by observing that

⟨𝑥 − ⟨𝑥, 𝑦⟩𝑦, 𝑦⟩ = ⟨𝑥, 𝑦⟩ − ⟨𝑥, 𝑦⟩∥𝑦∥2 = 0

and it follows that

0 ≤ ∥𝑥 − ⟨𝑥, 𝑦⟩𝑦∥2

= ⟨𝑥, 𝑥 − ⟨𝑥, 𝑦⟩𝑦⟩
= ⟨𝑥, 𝑥⟩ − ⟨𝑥, 𝑦⟩⟨𝑥, 𝑦⟩
= 1 − |⟨𝑥, 𝑦⟩|2.

Hence |⟨𝑥, 𝑦⟩| ≤ 1 = ∥𝑥∥∥𝑦∥, and this proves the lemma. □

As announced, this gives the triangle inequality for the map ∥ · ∥ defined above.

Corollary 1.4. For any 𝑥, 𝑦 ∈ H , we have ∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥.
In particular, the pair (H , ∥ · ∥) is a ℂ−normed vector space.
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Proof. Let 𝑥, 𝑦 ∈ H . Expanding the square of the norm of 𝑥 + 𝑦 and using Cauchy-
Schwarz, we get

∥𝑥 + 𝑦∥2 = ⟨𝑥 + 𝑦, 𝑥 + 𝑦⟩
= ∥𝑥∥2 + 2Re⟨𝑥, 𝑦⟩ + ∥𝑦∥2

≤ ∥𝑥∥2 + 2|⟨𝑥, 𝑦⟩| + ∥𝑦∥2

≤ ∥𝑥∥2 + 2∥𝑥∥∥𝑦∥ + ∥𝑦∥2

= (∥𝑥∥ + ∥𝑦∥)2

and so ∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥. This yields the desired claim. □

The norm induced by an inner product has many useful properties. The follow-
ing identities are known, respectively, as the parallelogram law and the Pythagore’s
theorem.

Proposition 1.5. For any 𝑥, 𝑦 ∈ H , we have ∥𝑥+ 𝑦∥2 + ∥𝑥− 𝑦∥2 = 2(∥𝑥∥2 + ∥𝑦∥2).
Moreover, if ⟨𝑥, 𝑦⟩ = 0, then ∥𝑥 + 𝑦∥2 = ∥𝑥∥2 + ∥𝑦∥2.

Proof. On one hand, we compute that

∥𝑥 + 𝑦∥2 = ⟨𝑥 + 𝑦, 𝑥 + 𝑦⟩ = ∥𝑥∥2 + ⟨𝑥, 𝑦⟩ + ⟨𝑦, 𝑥⟩ + ∥𝑦∥2 = ∥𝑥∥2 + 2Re⟨𝑥, 𝑦⟩ + ∥𝑦∥2

while on the other hand,

∥𝑥 − 𝑦∥2 = ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩ = ∥𝑥∥2 − ⟨𝑥, 𝑦⟩ − ⟨𝑦, 𝑥⟩ + ∥𝑦∥2 = ∥𝑥∥2 − 2Re⟨𝑥, 𝑦⟩ + ∥𝑦∥2.

Adding these two lines, the first claim follows. Pythagore’s theorem is a consequence
of

∥𝑥 + 𝑦∥2 = ∥𝑥∥2 + 2Re⟨𝑥, 𝑦⟩ + ∥𝑦∥2

since the middle term of the right hand side vanishes if ⟨𝑥, 𝑦⟩ = 0. □

We can now define Hilbert spaces. For this, recall that a metric space 𝑋 is called
complete if any Cauchy sequence in 𝑋 converges. Recall also that a normed space
(𝑉, ∥ · ∥) is automatically a metric space for the metric d defined by d(𝑣, 𝑤) ··= ∥𝑣−𝑤∥,
𝑣, 𝑤 ∈ 𝑉 . We say that (𝑉, ∥ · ∥) is a Banach space if the metric space (𝑉, d) is complete.

Definition 1.6. A complex Hilbert space is a pre-Hilbert space H which is a
Banach space for the norm ∥ · ∥ ··=

√︁
⟨·, ·⟩.

Example 1.7. (i) ℂ is complete, so it is a Hilbert space. More generally, ℂ𝑛 is a Hilbert
space for all 𝑛 ≥ 1.
(ii) If (𝑋,A, 𝜇) is a measure space, 𝐿2(𝑋,A, 𝜇) is a complex Hilbert space.
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We close this subsection with the statement of the Riesz representation theorem,
which will be the key to construct adjoint operators in the next part.

Theorem 1.8. Let H be a complex Hilbert space, and 𝑓 ∈ H ∗.
Then there exists a unique 𝑦 ∈ H such that

𝑓 (𝑥) = ⟨𝑥, 𝑦⟩

for all 𝑥 ∈ H . Moreover, ∥ 𝑓 ∥ = ∥𝑦∥.

Proof. See Appendix A. □

1.2 Self-adjoint operators

Throughout this section, unless stated otherwise, H is a complex Hilbert space,
and 𝐴 : H −→ H is a bounded linear operator on H . We denote B(H) the Banach
space of bounded linear operators on H .

Fix 𝑦 ∈ H . Consider the linear functional 𝜑 defined as 𝜑(𝑥) ··= ⟨𝐴𝑥, 𝑦⟩, for any
𝑥 ∈ H . Since 𝐴 and the first variable of the inner product are linear, 𝜑 is linear, and
the Cauchy-Schwarz inequality tells us it is bounded, as

|𝜑(𝑥) | = |⟨𝐴𝑥, 𝑦⟩| ≤ ∥𝐴𝑥∥∥𝑦∥ ≤ ∥𝐴∥∥𝑥∥∥𝑦∥

for any 𝑥 ∈ H . Thus ∥𝜑∥ ≤ ∥𝐴∥∥𝑦∥. Therefore, Riesz representation theorem gives
the existence of a unique element 𝐴∗𝑦 of H so that 𝜑(𝑥) = ⟨𝑥, 𝐴∗𝑦⟩ for all 𝑥 ∈ H , i.e.

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩

for all 𝑥 ∈ H . Moreover, ∥𝜑∥ = ∥𝐴∗𝑦∥. This correspondence defines a map

𝐴∗ : H −→ H
𝑦 ↦−→ 𝐴∗𝑦

and one easily checks that 𝐴∗ is in fact linear. This motivates the next definition.

Definition 1.9. The operator 𝐴∗ : H → H defined above, such that

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩

for all 𝑥, 𝑦 ∈ H , is called the adjoint operator of 𝐴.

As a consequence of Riesz representation theorem, the adjoint 𝐴∗ of 𝐴 is the unique
bounded linear operator satisfying the equality of Definition 1.9.

11
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Here are the first general properties for computations with adjoint operators.

Proposition 1.10. (i) Id∗
H = IdH , and (𝐴∗)∗ = 𝐴 for all 𝐴 ∈ B(H).

(ii) (𝐴 + 𝜆𝐵)∗ = 𝐴∗ + 𝜆𝐵∗ for all 𝐴, 𝐵 ∈ B(H) and 𝜆 ∈ ℂ.

(iii) (𝐵 ◦ 𝐴)∗ = 𝐴∗ ◦ 𝐵∗ for all 𝐴, 𝐵 ∈ B(H).

(iv) ∥𝐴∗∥ = ∥𝐴∥, and ∥𝐴∗𝐴∥ = ∥𝐴∥2 for all 𝐴 ∈ B(H).

The proofs rely on the following strategy: since the adjoint of an operator is the
unique operator satisfying a certain property, to show a given operator coincides with
an adjoint, it suffices to show that the given operator satisfies the same property as
the adjoint.

Proof. (i) For any 𝑥, 𝑦 ∈ H , we have ⟨𝑥, IdH (𝑦)⟩ = ⟨𝑥, 𝑦⟩ = ⟨IdH (𝑥), 𝑦⟩, so necessarily
Id∗

H = IdH . In the same way, we compute that

⟨𝑥, 𝐴𝑦⟩ = ⟨𝐴𝑦, 𝑥⟩ = ⟨𝑦, 𝐴∗𝑥⟩ = ⟨𝐴∗𝑥, 𝑦⟩

which implies 𝐴 = (𝐴∗)∗.
(ii) Fix 𝑥, 𝑦 ∈ H , and observe that

⟨𝑥, (𝐴∗ + 𝜆𝐵∗)𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩ + 𝜆⟨𝑥, 𝐵∗𝑦⟩ = ⟨𝐴𝑥, 𝑦⟩ + 𝜆⟨𝐵𝑥, 𝑦⟩ = ⟨(𝐴 + 𝜆𝐵)𝑥, 𝑦⟩

by using properties of the inner product. Therefore, 𝐴∗ + 𝜆𝐵∗ = (𝐴 + 𝜆𝐵)∗.
(iii) Here again, we have

⟨𝑥, 𝐴∗(𝐵∗𝑦)⟩ = ⟨𝐴𝑥, 𝐵∗𝑦⟩ = ⟨𝐵(𝐴𝑥), 𝑦⟩

for all 𝑥, 𝑦 ∈ H , implying (𝐵 ◦ 𝐴)∗ = 𝐴∗ ◦ 𝐵∗.
(iv) The paragraph preceding Definition 1.9 shows that ∥𝐴∗𝑦∥ ≤ ∥𝐴∥∥𝑦∥ for all 𝑦 ∈ H ,
giving the upper bound ∥𝐴∗∥ ≤ ∥𝐴∥. On the other hand, the same inequality with 𝐴∗

instead of 𝐴 provides
∥(𝐴∗)∗∥ ≤ ∥𝐴∗∥

so by (i) we get in fact ∥𝐴∥ ≤ ∥𝐴∗∥. Henceforth, ∥𝐴∗∥ = ∥𝐴∥.
For the last claim, let 𝑥 ∈ H with ∥𝑥∥ = 1. The definition of the operator norm provides

∥𝐴∗𝐴𝑥∥ ≤ ∥𝐴∗∥∥𝐴𝑥∥ ≤ ∥𝐴∗∥∥𝐴∥∥𝑥∥ = ∥𝐴∥2

using ∥𝐴∗∥ = ∥𝐴∥ in the last step. On the other hand, an application of Cauchy-
Schwarz inequality shows that

∥𝐴𝑥∥2 = ⟨𝐴𝑥, 𝐴𝑥⟩ = ⟨𝑥, 𝐴∗𝐴𝑥⟩ ≤ |⟨𝑥, 𝐴∗𝐴𝑥⟩| ≤ ∥𝐴∗𝐴𝑥∥ ≤ ∥𝐴∗𝐴∥

providing the other bound ∥𝐴∥2 ≤ ∥𝐴∗𝐴∥. This finishes the proof. □

12



Semester project 1.2 Self-adjoint operators

For our purposes, we will be interested in a special class of operators.

Definition 1.11. If 𝐴 ∈ B(H) satisfies 𝐴∗ = 𝐴, then 𝐴 is called self-adjoint.

Self-adjoint operators play a crucial role in finite dimensional linear algebra, mainly
through the famous spectral theorem. For us, the important property they carry is an
other way of computing their norms.

Theorem 1.12. Let 𝐴 ∈ B(H) be a self-adjoint operator on H .
Then, one has

∥𝐴∥ = sup
∥𝑥∥=1

|⟨𝐴𝑥, 𝑥⟩|.

Proof. Let us denote 𝐶 ··= sup
∥𝑥∥=1

|⟨𝐴𝑥, 𝑥⟩|. Note that 𝐶 also equals sup
𝑥≠0

|⟨𝐴𝑥, 𝑥⟩|
∥𝑥∥2 .

If ∥𝑥∥ = 1, the Cauchy-Schwarz inequality and the definition of the norm of 𝐴 gives

|⟨𝐴𝑥, 𝑥⟩| ≤ ∥𝐴𝑥∥∥𝑥∥ ≤ ∥𝐴∥∥𝑥∥∥𝑥∥ = ∥𝐴∥

leading 𝐶 ≤ ∥𝐴∥. On the other hand, a direct computation proves that

⟨𝐴(𝑥 + 𝑧), 𝑥 + 𝑧⟩ − ⟨𝐴(𝑥 − 𝑧), 𝑥 − 𝑧⟩ = 2(⟨𝐴𝑥, 𝑧⟩ + ⟨𝐴𝑧, 𝑥⟩)

for all 𝑥, 𝑧 ∈ H , and since 𝐴 is self-adjoint, ⟨𝐴𝑧, 𝑥⟩ = ⟨𝑥, 𝐴𝑧⟩ = ⟨𝐴𝑥, 𝑧⟩. Thus

⟨𝐴(𝑥 + 𝑧), 𝑥 + 𝑧⟩ − ⟨𝐴(𝑥 − 𝑧), 𝑥 − 𝑧⟩ = 2(⟨𝐴𝑥, 𝑧⟩ + ⟨𝐴𝑥, 𝑧⟩) = 4Re⟨𝐴𝑥, 𝑧⟩.

This way, we can estimate

|Re⟨𝐴𝑥, 𝑧⟩| ≤ 𝐶

4
(∥𝑥 + 𝑧∥2 + ∥𝑥 − 𝑧∥2) ≤ 𝐶

2
(∥𝑥∥2 + ∥𝑧∥2)

by using the paralellogram law. Now let 𝑥 ∈ H with ∥𝑥∥ = 1, and suppose 𝐴𝑥 ≠ 0. Set
𝑧 ··= 𝐴𝑥

∥𝐴𝑥∥ . Then Re⟨𝐴𝑥, 𝑧⟩ reduces to ∥𝐴𝑥∥, and it follows from the last estimate that

∥𝐴𝑥∥ = Re⟨𝐴𝑥, 𝑧⟩ ≤ 𝐶

2

(
∥𝑥∥2 +

 𝐴𝑥

∥𝐴𝑥∥

2)
= 𝐶

which provides the upper bound ∥𝐴∥ ≤ 𝐶. This concludes the proof. □

It turns out the norm of a bounded self-adjoint operator can be recovered as the
limit of a sequence involving 𝑛−th powers of the operator. To prove this, we need a
useful lemma from analysis, usually known as Fekete’s lemma. To state it, recall that
a sequence of real numbers (𝑎𝑛)𝑛≥0 is subadditive if 𝑎𝑛+𝑚 ≤ 𝑎𝑛 + 𝑎𝑚 for all 𝑛, 𝑚 ≥ 0.
Similarly, (𝑎𝑛)𝑛≥0 is submultiplicative if 𝑎𝑛+𝑚 ≤ 𝑎𝑛𝑎𝑚 for all 𝑛, 𝑚 ≥ 0.

13



Semester project 1.2 Self-adjoint operators

Lemma 1.13. (i) Let (𝑎𝑛)𝑛≥1 be subadditive. Then lim
𝑛→∞

𝑎𝑛

𝑛
exists and equals

inf
𝑛≥1

𝑎𝑛

𝑛
.

(ii) Let (𝑎𝑛)𝑛≥1 be a submultiplicative sequence of positive real numbers. Then
lim
𝑛→∞

𝑎
1
𝑛
𝑛 exists and equals inf

𝑛≥1
𝑎

1
𝑛
𝑛 .

Proof. (i) Let 𝜀 > 0. Denote ℓ ··= inf
𝑛≥1

𝑎𝑛

𝑛
. There exists 𝑁 ∈ ℕ such that 𝑎𝑁

𝑁
≤ ℓ + 𝜀.

By euclidean division, any 𝑛 ≥ 1 can be written as 𝑛 = 𝑘𝑁 + 𝑞, with 0 ≤ 𝑞 < 𝑁.
Subadditivity of (𝑎𝑛)𝑛≥1 now implies ℓ 𝑛 ≤ 𝑎𝑛 = 𝑎𝑘𝑁+𝑞 ≤ 𝑘𝑎𝑁 + 𝑎𝑞 and dividing by 𝑛 it
follows that

ℓ ≤ lim inf
𝑛≥1

𝑎𝑛

𝑛
≤ lim sup

𝑛≥1

𝑎𝑛

𝑛
≤ 𝑎𝑁

𝑁
≤ ℓ + 𝜀.

As 𝜀 > 0 was arbitrary, this yields the announced claim.
(ii) This is a consequence of the previous point, since if (𝑎𝑛)𝑛≥1 is submultiplicative,
then (log 𝑎𝑛)𝑛≥1 is subadditive. □

This result is very useful to establish easily the existence of some limits. Here, we
employ it as follows.

Proposition 1.14. Let 𝐴 ∈ B(H).
Then, the number

𝑟(𝐴) ··= lim
𝑛→∞

∥𝐴𝑛∥ 1
𝑛

is well-defined, and equals inf
𝑛≥1

∥𝐴𝑛∥ 1
𝑛 . Moreover, 𝑟(𝐴) ≤ ∥𝐴∥.

Proof. Since ∥ · ∥ is submultiplicative, the sequence (∥𝐴𝑛∥)𝑛≥1 is submultiplicative,
and Lemma 1.13(ii) gives the existence and the value of 𝑟(𝐴). For the second claim,
we just note that ∥𝐴𝑛∥ ≤ ∥𝐴∥𝑛 for all 𝑛 ≥ 1, so that ∥𝐴𝑛∥ 1

𝑛 ≤ ∥𝐴∥ for all 𝑛 ≥ 1, and
thus 𝑟(𝐴) ≤ ∥𝐴∥. □

For self-adjoint operators, the last inequality is in fact an equality.

Proposition 1.15. Let 𝐴 ∈ B(H) be a self-adjoint operator on H .
Then, one has 𝑟(𝐴) = ∥𝐴∥.

14
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Proof. Using Proposition 1.10(iv) and applying the equality ∥𝐴∗𝐴∥ = ∥𝐴∥2 with 𝐴∗ = 𝐴

leads to ∥𝐴2∥ = ∥𝐴∥2. Applying it with the operator 𝐴∗𝐴 instead of 𝐴 leads ∥𝐴4∥ =

∥𝐴∥4, and by induction we get
∥𝐴2𝑛 ∥ = ∥𝐴∥2𝑛

for all 𝑛 ≥ 0, so ∥𝐴2𝑛 ∥ 1
2𝑛 = ∥𝐴∥ for all 𝑛 ≥ 0. Hence (∥𝐴𝑛∥ 1

𝑛 )𝑛≥0 has a constant, thus
convergent, subsequence. By Proposition 1.14, (∥𝐴𝑛∥ 1

𝑛 )𝑛≥0 converges, so its limit is the
limit of any of its subsequences. This forces

𝑟(𝐴) = lim
𝑛→∞

∥𝐴𝑛∥ 1
𝑛 = lim

𝑛→∞
∥𝐴2𝑛 ∥ 1

2𝑛 = ∥𝐴∥

and the proof is over. □

1.3 Uniform convexity in Hilbert spaces

In a Hilbert space, the norm is induced by an inner product, making computations
easier than in a standard normed space. In this part, we use its properties at our
advantage to understand the behaviour of the mean of unit vectors in terms of distance
that separates those vectors.

Lemma 1.16. Let 𝑢, 𝑣 ∈ H be such that ∥𝑢∥ = ∥𝑣∥ = 1.
Then, it holds that ∥ 𝑢+𝑣

2 ∥2 = 1 − 1
4 ∥𝑢 − 𝑣∥2.

Proof. This follows from the parallelogram law, since𝑢 + 𝑣

2

2
+ 1

4
∥𝑢 − 𝑣∥2 =

1
4
(∥𝑢 + 𝑣∥2 + ∥𝑢 − 𝑣∥2) = 1

4
(2∥𝑢∥2 + 2∥𝑣∥2) = 1

using that ∥𝑢∥ = ∥𝑣∥ = 1. □

This identity has the following consequence.

Lemma 1.17. Let 𝛿 > 0.
There exists 𝜀 > 0 such that, for any pair of unit vectors 𝑢, 𝑣 ∈ H satisfying
∥𝑢 − 𝑣∥ ≥ 𝛿, we have ∥ 𝑢+𝑣

2 ∥ ≤ 1 − 𝜀.

Proof. Let 𝜀 ··= 1− 1
2

√
4 − 𝛿2. This is a well-defined quantity since ∥𝑢−𝑣∥ ≤ ∥𝑢∥+∥𝑣∥ =

2, so 𝛿 ≤ 2. Moreover 𝛿 > 0 so 𝜀 > 0 as well. Now, using the previous lemma, one has𝑢 + 𝑣

2

2
= 1 − 1

4
∥𝑢 − 𝑣∥2 ≤ 1 − 1

4
𝛿2 = (1 − 𝜀)2

proving that ∥ 𝑢+𝑣
2 ∥ ≤ 1 − 𝜀. □

15



Semester project 1.3 Uniform convexity in Hilbert spaces

Remark 1.18. The heart of the statement lies really in the interaction between 𝛿 and
𝜀, and the explicit formula 𝜀 = 1 − 1

2

√
4 − 𝛿2 quantifies this interaction. In words, the

more 𝑢 and 𝑣 are far from each other, the more their mean has norm far from 1. On
the other hand, Lemma 1.16 tells also that if 𝑢 and 𝑣 are very closed from each other,
then their mean has norm closed to 1.

This idea, and the previous lemma, can be generalized to an arbitrary large family
of vectors, provided that at least two of them are far from each other.

Proposition 1.19. Let 𝑛 ≥ 2 and 𝛿 > 0.
There exists 𝜀 > 0 such that, for any family of unit vectors 𝑢1, . . . , 𝑢𝑛 ∈ H with

max
1≤𝑖< 𝑗≤𝑛

∥𝑢𝑖 − 𝑢 𝑗 ∥ ≥ 𝛿, we have𝑢1 + · · · + 𝑢𝑛

𝑛

 ≤ 1 − 𝜀.

Proof. Up to relabeling, we can assume that ∥𝑢1 − 𝑢2∥ ≥ 𝛿. Then, by Lemma 1.17,
there is 𝜀′ > 0 such that ∥ 𝑢1+𝑢2

2 ∥ ≤ 1 − 𝜀′. Since the norm of the mean of the 𝑛 − 2
remaining vectors is bounded by 1, it follows that𝑢1 + · · · + 𝑢𝑛

𝑛

 = 2
𝑛

𝑢1 + 𝑢2
2

+ 𝑛 − 2
𝑛

𝑢3 + · · · + 𝑢𝑛

𝑛 − 2


≤ 2

𝑛
(1 − 𝜀′) + 𝑛 − 2

𝑛

= 1 − 2𝜀′

𝑛

and we get the desired result by setting 𝜀 ··= 2𝜀′
𝑛

> 0. □
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2. Amenability and random walks on groups

We now define the main notion of this work, namely that of amenability for groups,
and we introduce the model of random walks on finitely generated groups.

A group 𝐺 is called finitely generated if there exists a finite subset 𝑆 ⊂ 𝐺 such that
𝐺 = ⟨𝑆⟩, i.e. every 𝑔 ∈ 𝐺 can be written as a composition of finitely many elements of
𝑆 or their inverses. Those are called generators for the group 𝐺.

2.1 Reiter properties

Initially, Von Neumann defined the concept of amenability for groups in 1929, after
his study of the famous Banach-Tarski paradox. The latter claims it is possible, in the
euclidean space ℝ3, to cut the unit ball into finitely many pieces and move these pieces
around to get two disjoint copies of the initial ball. Von Neumann realized this paradox
comes from a feature of the underlying group Isom(ℝ3) we use to move the pieces. He
then proposed a first definition of amenability, in terms of the existence of invariant
means on the group.

In 1955, Følner showed this definition of amenability could be restated as the exis-
tence of almost invariant sets in the group [3]. This characterization is in some sense
more analytical, and led a third criterion of amenability, established by Hans Reiter
[10]. This is the definition we will use below.

Definition 2.1. Let (𝑉, ∥ · ∥) be a normed space. Let 𝑆 ⊂ 𝐺 be finite and 𝜀 > 0.
A vector 𝑣 ∈ 𝑉 is called (𝑆, 𝜀)−invariant if ∥𝑠𝑣 − 𝑣∥ < 𝜀∥𝑣∥ for all 𝑠 ∈ 𝑆.

Once a group 𝐺 is fixed, we have directly in our hands a collection of normed spaces
on which 𝐺 acts naturally, namely all the (ℓ 𝑝(𝐺), ∥ · ∥𝑝) spaces, for 𝑝 ≥ 1. For 𝑓 ∈
ℓ 𝑝(𝐺), its 𝑝−norm is

∥ 𝑓 ∥𝑝 =
(∑︁
ℎ∈𝐺

| 𝑓 (ℎ) |𝑝
) 1

𝑝

and if 𝑔 ∈ 𝐺 is fixed, the function 𝑔𝑓 is defined as (𝑔𝑓 ) (ℎ) ··= 𝑓 (𝑔−1ℎ) for all ℎ ≥ 1.
Note that this action is isometric, i.e. ∥𝑔𝑓 ∥𝑝 = ∥ 𝑓 ∥𝑝 for all 𝑓 ∈ ℓ 𝑝(𝐺) and 𝑔 ∈ 𝐺, since
the left multiplication by 𝑔−1 is a bijection on 𝐺.

Definition 2.2. Let 1 ≤ 𝑝 < ∞.
We say that 𝐺 has the Reiter property (𝑅𝑝) if the action 𝐺 ↷ ℓ 𝑝(𝐺) has
(𝑆, 𝜀)−invariant vectors, for all 𝑆 ⊂ 𝐺 finite and 𝜀 > 0.

18



Semester project 2.1 Reiter properties

Example 2.3. (i) If 𝐺 is a finite group, then the function 𝑣(𝑔) ··= 1
|𝐺 | ∈ ℓ 1(𝐺) is

(𝑆, 𝜀)−invariant for all 𝑆 ⊂ 𝐺 and 𝜀 > 0. Hence 𝐺 has (𝑅1). More generally, the
constant function 𝑣(𝑔) = 1

|𝐺 |1/𝑝 is always invariant, so any finite group has (𝑅𝑝), for all
𝑝 ≥ 1.
(ii) The groupℤ has (𝑅1). To see this, fix 𝑆 ⊂ ℤ and 𝜀 > 0. Without restriction, we may
assume that 𝑆 is symmetric. Let 𝑚 ··= max

𝑠∈𝑆
|𝑠|, 𝑛 ··= ⌊ 2𝑚

𝜀 ⌋ + 1 and 𝑣(𝑘) ··= 1
𝑛
1{1,...,𝑛} (𝑘),

for 𝑘 ∈ ℤ. Clearly, ∥𝑣∥1 = 1 and for any 𝑠 ∈ 𝑆, one has

∥𝑠𝑣 − 𝑣∥1 =
2𝑠
𝑛

≤ 2𝑚
𝑛

< 𝜀

so 𝑣 ∈ ℓ 1(ℤ) is (𝑆, 𝜀)−invariant.

We can now define what an amenable group is.

Definition 2.4. A group 𝐺 is amenable if it has the Reiter property (𝑅1).

The two previous examples show then that finite groups, and ℤ, are amenable.
Among all ℓ 𝑝(𝐺)−spaces, ℓ 2(𝐺) carries naturally the structure of a Hilbert space,

distinguishing it from the others. We are then willing to relate the two properties (𝑅1)
and (𝑅2). This is done by the following result.

Proposition 2.5. A group 𝐺 has (𝑅1) if and only if it has (𝑅2).

Proof. Suppose 𝐺 has the property (𝑅1), and fix 𝑆 ⊂ 𝐺 finite, 𝜀 > 0.
By assumption, there is 𝜓 ∈ ℓ 1(𝐺) which is (𝑆, 𝜀2)−invariant, i.e.

∥𝑠𝜓 −𝜓∥1 < 𝜀2∥𝜓∥1

for all 𝑠 ∈ 𝑆. Let then 𝜑 ··= |𝜓 | 1
2 . First, it is an element of ℓ 2(𝐺), because

∥𝜑∥2
2 =

∑︁
𝑔∈𝐺

|𝜑(𝑔) |2 =
∑︁
𝑔∈𝐺

|𝜓 (𝑔) | = ∥𝜓∥1

and ∥𝜓∥1 < ∞. Now, if 𝑠 ∈ 𝑆, one has

∥𝑠𝜑 − 𝜑∥2
2 =

∑︁
𝑔∈𝐺

| (𝑠𝜑) (𝑔) − 𝜑(𝑔) |2

=
∑︁
𝑔∈𝐺

|𝜑(𝑠−1𝑔) − 𝜑(𝑔) |2

=
∑︁
𝑔∈𝐺

��|𝜓 (𝑠−1𝑔) | 1
2 − |𝜓 (𝑔) | 1

2
��2
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≤
∑︁
𝑔∈𝐺

��|𝜓 (𝑠−1𝑔) | − |𝜓 (𝑔) |
��

≤
∑︁
𝑔∈𝐺

|𝜓 (𝑠−1𝑔) −𝜓 (𝑔) |

= ∥𝑠𝜓 −𝜓∥1

< 𝜀2∥𝜓∥1 = 𝜀2∥𝜑∥2
2

using the inequality |𝑎− 𝑏|2 ≤ |𝑎2 − 𝑏2 | if 𝑎, 𝑏 ≥ 0, the fact that 𝜓 is (𝑆, 𝜀)−invariant,
and our previous computation. Now taking the square root yields ∥𝑠𝜑 −𝜑∥2 < 𝜀∥𝜑∥2,
and this holds for all 𝑠 ∈ 𝑆. Thus 𝐺 has (𝑅2) as well.

Conversely, assume 𝐺 has (𝑅2). Let 𝑆 ⊂ 𝐺 be finite, and 𝜀 > 0. By hypothesis,
there is 𝜓 ∈ ℓ 2(𝐺) which is (𝑆, 𝜀2)−invariant. Let us define 𝜑 ··= 𝜓2. Note to begin
that

∥𝜑∥1 =
∑︁
𝑔∈𝐺

|𝜑(𝑔) | =
∑︁
𝑔∈𝐺

|𝜓 (𝑔) |2 = ∥𝜓∥2
2 < ∞

so indeed 𝜑 ∈ ℓ 1(𝐺). Proceeding as above, for all 𝑠 ∈ 𝑆 we get

∥𝑠𝜑 − 𝜑∥1 =
∑︁
𝑔∈𝐺

| (𝑠𝜑) (𝑔) − 𝜑(𝑔) |

=
∑︁
𝑔∈𝐺

|𝜑(𝑠−1𝑔) − 𝜑(𝑔) |

=
∑︁
𝑔∈𝐺

|𝜓 (𝑠−1𝑔)2 −𝜓 (𝑔)2 |

=
∑︁
𝑔∈𝐺

|𝜓 (𝑠−1𝑔) −𝜓 (𝑔) | |𝜓 (𝑠−1𝑔) +𝜓 (𝑔) |

≤
(∑︁
𝑔∈𝐺

|𝜓 (𝑠−1𝑔) −𝜓 (𝑔) |2
) 1

2
(∑︁
𝑔∈𝐺

|𝜓 (𝑠−1𝑔) +𝜓 (𝑔) |2
) 1

2

= ∥𝑠𝜓 −𝜓∥2︸       ︷︷       ︸
< 𝜀

2 ∥𝜓∥2

∥𝑠𝜓 +𝜓∥2︸       ︷︷       ︸
≤2∥𝜓∥2

< 𝜀∥𝜓∥2
2 = 𝜀∥𝜑∥1

and the first inequality follows from Cauchy-Schwarz. The bound ∥𝑠𝜓 +𝜓∥2 ≤ 2∥𝜓∥2
comes from the triangle inequality and the fact that the action of 𝑠 on ℓ 2(𝐺) is isomet-
ric. Hence we found a (𝑆, 𝜀)−invariant vector 𝜑 ∈ ℓ 1(𝐺), which shows 𝐺 has (𝑅1).
This concludes the proof. □

As a matter of fact, we will need a third equivalent characterization of amenability,
that we formulate now. We say that 𝐺 has the property (𝐶) if, for all 𝑆 ⊂ 𝐺 finite and
𝜀 > 0, there exists 𝜑 ∈ ℓ 2(𝐺) such that 1

|𝑆|
∑︁
𝑠∈𝑆

𝑠𝜑


2
> (1 − 𝜀)∥𝜑∥2.
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Thanks to our work above in Hilbert spaces, we can derive the following proposition.

Proposition 2.6. A group 𝐺 has (𝑅2) if and only if 𝐺 has (𝐶).

Proof. First, let’s assume 𝐺 has (𝑅2). Fix 𝑆 ⊂ 𝐺 finite and 𝜀 > 0. Then there exists
𝜑 ∈ ℓ 2(𝐺) such that ∥𝑠𝜑 − 𝜑∥2 < 𝜀∥𝜑∥2 for all 𝑠 ∈ 𝑆. The two triangle inequalities
provide

∥𝜑∥2 −
 1
|𝑆|

∑︁
𝑠∈𝑆

𝑠𝜑


2
≤
𝜑 − 1

|𝑆|
∑︁
𝑠∈𝑆

𝑠𝜑


2

≤ 1
|𝑆|

∑︁
𝑠∈𝑆

𝜑 − 𝑠𝜑


2

≤ 1
|𝑆|

∑︁
𝑠∈𝑆

∥𝜑 − 𝑠𝜑∥2︸       ︷︷       ︸
≤𝜀∥𝜑∥2

≤ 𝜀∥𝜑∥2

which is equivalent to
 1
|𝑆|

∑︁
𝑠∈𝑆

𝑠𝜑


2
≥ (1−𝜀)∥𝜑∥2. Hence 𝐺 has also the property (𝐶).

Conversely, suppose 𝐺 does not have (𝑅2). We will show it does not have property
(𝐶) either. By hypothesis, there is a finite subset 𝑆 of 𝐺 and a constant 𝜀 > 0 such that,
for all 𝜑 ∈ ℓ 2(𝐺), there exists 𝑠 ∈ 𝑆 with ∥𝑠𝜑−𝜑∥2 ≥ 𝜀∥𝜑∥2. Write 𝑆 = {𝑠1, . . . , 𝑠𝑛−1},
and let us define 𝑆′ ··= 𝑆 ∪ {𝑒𝐺}. Fix 𝜑 ∈ ℓ 2(𝐺) with ∥𝜑∥2 = 1. By hypothesis, in
the family of unit vectors 𝑢1 = 𝜑, 𝑢2 = 𝑠1𝜑, . . . , 𝑢𝑛 = 𝑠𝑛−1𝜑, we can find an index
𝑖 ∈ {1, . . . , 𝑛 − 1} such that

∥𝑢𝑖 − 𝑢1∥ ≥ 𝜀.

By Proposition 1.19, we therefore find 𝜀′ > 0 such that 1
|𝑆′|

∑︁
𝑠′∈𝑆′

𝑠′𝜑


2
=

1
𝑛

𝑛∑︁
𝑖=1

𝑢𝑖


2
≤ 1 − 𝜀′.

Note that the constant 𝜀′ does not depend on 𝜑. Now, if 𝜑 ∈ ℓ 2(𝐺) \ {0} doesn’t have
norm 1, we can apply what we just proved to 𝜓 ··= 𝜑

∥𝜑∥ to get 1
|𝑆′|

∑︁
𝑠′∈𝑆′

𝑠′𝜓


2
≤ 1 − 𝜀′

which is equivalent to
 1
|𝑆′|

∑︁
𝑠′∈𝑆′

𝑠′𝜑


2
≤ (1 − 𝜀′)∥𝜑∥2. Lastly, if 𝜑 = 0 the inequality

clearly holds. This proves that 𝐺 does not have (𝐶), and finishes the proof. □
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Therefore we will make use of the following corollary to prove Kesten’s theorem.

Corollary 2.7. A group 𝐺 is amenable if and only if it has property (𝐶).

Proof. Combine Proposition 2.5 and 2.6. □

2.2 Random walks on finitely generated groups

Let 𝐺 be a finitely generated group, with a finite symmetric generating set 𝑆. De-
note 𝑒 its neutral element, and assume 𝑒 ∉ 𝑆.

Let 𝜇 be a symmetric probability measure on 𝐺, i.e. a map 𝜇 : 𝐺 −→ [0, 1] such
that ∑︁

𝑔∈𝐺
𝜇(𝑔) = 1

and 𝜇(𝑔) = 𝜇(𝑔−1) for any 𝑔 ∈ 𝐺.
A random walk on 𝐺 with distribution 𝜇 is a Markov chain consisting of 𝐺−valued

random variables (𝑋𝑛)𝑛≥0, all defined on the same probability space (Ω, F ,ℙ), of the
form

𝑋𝑛 = 𝑋0𝜉1 . . . 𝜉𝑛

where (𝜉𝑛)𝑛≥1 are independent and identically distributed𝐺−valued random variables
with distribution 𝜇, and 𝑋0 = 𝑥 with probability one, where 𝑥 ∈ 𝐺 is an arbitrary
group element. The underlying probability space is Ω = 𝐺ℕ, F is the cylindrical
𝜎−algebra, generated by cylinder sets, i.e. subsets of Ω consisting of sequences with a
finite number of fixed coordinates. More precisely, for 𝑘 ≥ 0 and 𝑔 ∈ 𝐺, let

𝐶𝑘
𝑔
··= {(𝑥𝑛)𝑛≥0 ∈ Ω | 𝑥𝑘 = 𝑔}

and for finitely many group elements 𝑔0, . . . , 𝑔𝑛 ∈ 𝐺, let 𝐶𝑔0,...,𝑔𝑛
··=

𝑛⋂
𝑘=0

𝐶𝑘
𝑔𝑘

. Denoting

by C the collection of all cylinder sets, we then have F = 𝜎(C). Finally, ℙ = 𝜇ℕ is the

product measure, i.e. the unique measure on Ω with ℙ(𝐶𝑔0,...,𝑔𝑛) =
𝑛∏
𝑖=0

𝜇(𝑔𝑖).

The step distribution of the random walk is the common distribution 𝜇 of the in-
crements (𝜉𝑛)𝑛≥1, that is

ℙ(𝜉𝑖 = 𝑦) = 𝜇(𝑦)
and in general ℙ(𝑋𝑛 = 𝑦) = 𝜇∗𝑛(𝑦), where 𝜇∗𝑛 denotes the 𝑛−fold convolution1 of 𝜇
with itself. The transition probabilities are then given by 𝑝(𝑥, 𝑦) = 𝜇(𝑥−1𝑦), and more

1If 𝑓 : (𝐸,A) −→ (𝐹,B) is a measurable map between two measure spaces, and if 𝜇 is a measure
on 𝐸, its push-forward under 𝑓 is the measure 𝑓∗𝜇 on 𝐹 defined by 𝑓∗𝜇(𝐵) ··= 𝜇( 𝑓 −1(𝐵)) for all 𝐵 ∈ B.
Now, for two measures 𝜇 and 𝜈 on 𝐺, their convolution 𝜇 ∗𝜈 is the push-forward of the product measure
𝜇 ⊗ 𝜈 under the map 𝐺 × 𝐺 −→ 𝐺, (𝑥, 𝑦) ↦−→ 𝑥𝑦.
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generally
𝑝(𝑛) (𝑥, 𝑦) = 𝜇∗𝑛(𝑥−1𝑦)

for all 𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝐺. Since 𝑆 generates 𝐺, this Markov chain is irreducible, meaning
that for all 𝑥, 𝑦 ∈ 𝐺, there exists 𝑘 ≥ 1 such that 𝑝(𝑘) (𝑥, 𝑦) > 0.

Lastly, when the random increments take values in the generating set 𝑆, we say
the model is a nearest-neighbour random walk, and it is the simple random walk if
𝜇(𝑠) = 1

|𝑆| for all 𝑠 ∈ 𝑆. We will restrict ourselves to that case in what follows. Note
that in this setting, 𝑝(𝑥, 𝑦) ≠ 0 if and only if 𝑥−1𝑦 ∈ 𝑆, i.e. we pass from 𝑥 to 𝑦 by right
multiplication by a generator 𝑠 ∈ 𝑆.

To visualize a random walk concretely, it is common to use Cayley graphs of finitely
generated groups. First, let us state the definition of a graph we will use.

Definition 2.8. A graph Γ is a pair (𝑉, 𝐸) of sets together with three maps

𝑜 : 𝐸 −→ 𝑉

𝑡 : 𝐸 −→ 𝑉

·̄ : 𝐸 −→ 𝐸

such that 𝑜(𝑒) = 𝑡(𝑒) for all 𝑒 ∈ 𝐸, and ·̄ : 𝐸 −→ 𝐸 is an involution without fixed
points.

An element 𝑣 ∈ 𝑉 is called a vertex of the graph Γ, an element 𝑒 ∈ 𝐸 is an (oriented)
edge, and 𝑒 ∈ 𝐸 is the reversed edge to 𝑒. Above, the letters "𝑜" and "𝑡" were not chosen
randomly : think to the "origin" and the "terminus" of an edge. The third map is the
one reversing the orientation of an edge, and it is therefore natural to require it is an
involution. Changing the orientation twice does nothing. To say it does not have fixed
points means each edge 𝑒 ∈ 𝐸 is different from its reversed 𝑒 ∈ 𝐸.

The degree of a vertex 𝑣 ∈ 𝑉 is the cardinality of the set 𝑜−1(𝑣), and is denoted
deg(𝑣). If deg(𝑣) = 𝑘 for all 𝑣 ∈ 𝑉 , then Γ is said to be 𝑘−regular.

Given two vertices 𝑢, 𝑣 ∈ 𝑉 , a path between 𝑢 and 𝑣 is a sequence 𝑒1, . . . , 𝑒𝑛 of edges
such that 𝑜(𝑒1) = 𝑢, 𝑡(𝑒𝑛) = 𝑣 and 𝑡(𝑒𝑖) = 𝑜(𝑒𝑖+1) for all 𝑖 = 1, . . . , 𝑛 − 1. The graph Γ
is called connected if for every 𝑢, 𝑣 ∈ 𝑉 , there exists a path between 𝑢 and 𝑣.

A loop is an edge 𝑒 ∈ 𝐸 such that 𝑜(𝑒) = 𝑡(𝑒). Note that if 𝑒 is a loop, then so is 𝑒.
A cycle in Γ is a path connecting a vertex 𝑣 ∈ 𝑉 to itself without repetitions (unless 𝑣

which starts and ends the cycle), i.e. we cannot have 𝑜(𝑒 𝑗) = 𝑡(𝑒𝑖) if |𝑖 − 𝑗 | ≥ 1. Lastly,
a non-empty connected graph without cycles is called a tree, and a graph without loops
and multiple edges is simple.

Remark 2.9. The above definition, due to Serre [12], is a bit more involved and heavier
than other ones, and perhaps less intuitive compared to the way we draw graphs in
practice. However, it is by far the best, and the ambiguities encountered with others
definitions are not an issue anymore.
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Semester project 2.2 Random walks on finitely generated groups

Let’s adapt this framework in the particular case of a finitely generated group.

Definition 2.10. The Cayley graph of 𝐺 with respect to 𝑆 is the graph specified
by 𝑉 = 𝐺, 𝐸 = 𝐺×𝑆, and the maps 𝑜(𝑔, 𝑠) = 𝑔, 𝑡(𝑔, 𝑠) = 𝑔𝑠 and (𝑔, 𝑠) = (𝑔𝑠, 𝑠−1).

We shall check these satisfy Definition 2.8. Indeed, we have

𝑜((𝑔, 𝑠)) = 𝑜(𝑔𝑠, 𝑠−1) = 𝑔𝑠 = 𝑡(𝑔, 𝑠)

and (𝑔, 𝑠) = (𝑔𝑠, 𝑠−1) = (𝑔𝑠𝑠−1, 𝑠) = (𝑔, 𝑠) so · is an involution. The fact it does
not have fixed points comes from the assumption that 𝑒 ∉ 𝑆. Consequently, the sets
𝑉 = 𝐺 and 𝐸 = 𝐺 × 𝑆, together with these three maps, form a graph. We will denote
it Cay(𝐺, 𝑆).

In a Cayley graph, each edge carries a label, given by a generator 𝑠 ∈ 𝑆. Around
each vertex, there are |𝑆| outgoing edges, and |𝑆| incoming edges. In particular, the
degree of each vertex is 2|𝑆|. However, in the sequel we will replace a pair of edges
corresponding to a generator and its inverse by a single edge. In this way, Cay(𝐺, 𝑆)
is |𝑆|−regular.

Finally, observe that since 𝑆 generates 𝐺, Cay(𝐺, 𝑆) is connected, and since 𝑒 ∉ 𝑆,
Cay(𝐺, 𝑆) is simple.

Below are shown Cayley graphs for two cyclic groups, one finite and one infinite.

0
1

2
3

4

5

Figure 1: Cay(ℤ/6ℤ, {±1})

· · · 0 1 2 3 4 5 6 7 8 9 · · ·
Figure 2: Cay(ℤ, {±1})

For further examples, especially the ones we obtain by changing the generating set
𝑆, we refer to [5, chapter IV.A].

Let’s go back to random walks. To study their long-run behavior, a useful object to
consider is the Green function. It encodes probabilities transition of the model.
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Definition 2.11. Let 𝑥, 𝑦 ∈ 𝐺, 𝑧 ∈ ℂ.
The generating function 𝐺(𝑥, 𝑦|𝑧) of the sequence (𝑝(𝑛) (𝑥, 𝑦))𝑛≥0, defined as

𝐺(𝑥, 𝑦|𝑧) ··=
∑︁
𝑛≥0

𝑝(𝑛) (𝑥, 𝑦)𝑧𝑛

is called the Green function at 𝑥, 𝑦 ∈ 𝐺.

As the definition suggests it, we must do a computation for every pair of elements
𝑥, 𝑦 in 𝐺. However, it is not the case if 𝐺 is finitely generated.

Lemma 2.12. Let 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝐺, and 𝑧 ∈ ℂ.
𝐺(𝑥1, 𝑦1 |𝑧) converges absolutely if and only if 𝐺(𝑥2, 𝑦2 |𝑧) converges absolutely.

Proof. Fix 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝐺, and 𝑛 ∈ ℕ. Since 𝑆 generates 𝐺, we find 𝑠1, . . . , 𝑠𝑖 ∈ 𝑆

such that 𝑥2 = 𝑥1𝑠1 . . . 𝑠𝑖, so 𝑝(𝑖) (𝑥1, 𝑥2) > 0. Likewise, 𝑦1 can be obtained from 𝑦2 by
right multiplication by 𝑗 generators, so 𝑝( 𝑗) (𝑦2, 𝑦1) > 0, for some 𝑖, 𝑗 ≥ 1. It follows
that

𝑝(𝑛) (𝑥1, 𝑦1) ≥ 𝑝(𝑖) (𝑥1, 𝑥2)𝑝(𝑛−(𝑖+ 𝑗)) (𝑥2, 𝑦2)𝑝( 𝑗) (𝑦2, 𝑦1).
Suppose now that 𝐺(𝑥1, 𝑦1 |𝑧) converges absolutely. Then we get∑︁

𝑛≥𝑖+ 𝑗

𝑝(𝑛) (𝑥2, 𝑦2) |𝑧|𝑛 ≤ 1
|𝑧|𝑖+ 𝑗𝑝(𝑖) (𝑥1, 𝑥2)𝑝( 𝑗) (𝑦2, 𝑦1)

∑︁
𝑛≥0

𝑝(𝑛) (𝑥1, 𝑦1) |𝑧|𝑛 < ∞

which implies that 𝐺(𝑥2, 𝑦2 |𝑧) also converges absolutely. A symmetric reasoning gives
the other implication, finishing the proof. □

Thus, for a finitely generated group, the behavior of the Green function does not
depend on the choice of the pair 𝑥, 𝑦 ∈ 𝐺. In what follows we will assume the random
walk starts at 𝑒, i.e. 𝑋0 = 𝑒. In particular, we only consider 𝐺(𝑒, 𝑒|𝑧) and its radius of
convergence, given by

1

lim sup
𝑛→∞

𝑝(𝑛) (𝑒, 𝑒) 1
𝑛

according to the Cauchy-Hadamard formula [11, chapter 4.1].

Definition 2.13. The number

𝜌 ··= lim sup
𝑛→∞

𝑝(𝑛) (𝑒, 𝑒) 1
𝑛

is called the exponential decay rate of the random walk on 𝐺.
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Note that, since 𝑝(𝑛) (𝑒, 𝑒) ≤ 1 for all 𝑛 ≥ 1, 𝐺(𝑒, 𝑒|𝑧) converges absolutely for all
𝑧 ∈ ℂ with |𝑧| < 1, so its radius of convergence is at least 1, and then 𝜌 ≤ 1.

When studying random walks, an important feature of their behaviour is whether
they are recurrent or transient.

Definition 2.14. A state 𝑥 ∈ 𝐺 is called recurrent if 𝐺(𝑥, 𝑥|1) = ∞.

On the other hand, if a state 𝑥 ∈ 𝐺 is such that 𝐺(𝑥, 𝑥|1) converges, then 𝑥 is called
transient.

This definition appeals several remarks, though.

Remark 2.15. (i) For irreducible Markov chains, it can be shown that all states are ei-
ther transient or recurrent [4, corollary 13.4.5]. Since this applies to the random walk
on a finitely generated group, we will say the walk is recurrent if 𝐺(𝑒, 𝑒|1) diverges.
(ii) The above definition is equivalent to requiring that almost surely the walk visits
each state infinitely often. We refer to [4, proposition 13.4.2] for a proof of this fact.

With these remarks, we directly deduce the next result.

Corollary 2.16. If a random walk on 𝐺 is recurrent, then 𝜌 = 1.

Proof. Since the walk is recurrent, 𝐺(𝑒, 𝑒|1) diverges, so its radius of convergence is
at most 1. It is also at least 1, so in fact the radius of convergence equals 1, and thus
so does 𝜌. □

Let’s illustrate the previous concepts with some explicit computations. Recall that
for two sequences of real numbers (𝑢𝑘)𝑘≥0 and (𝑣𝑘)𝑘≥0, we denote 𝑢𝑘 ≃ 𝑣𝑘 if

lim
𝑘→∞

𝑢𝑘

𝑣𝑘
= 1.

In words, this means (𝑢𝑘)𝑘≥0 and (𝑣𝑘)𝑘≥0 have the same asymptotic behaviour.

Example 2.17. (i) Let 𝐺 = ℤ be the group of integers, generated by 𝑆 = {−1, 1}.
The simple random walk on 𝐺 is then the process (𝑋𝑛)𝑛≥0 defined by 𝑋0 = 0 and
𝑋𝑛 = 𝜉1 + · · · + 𝜉𝑛, 𝑛 ≥ 1, where each 𝜉𝑖 has the Bernoulli distribution of parameter 1

2 .
To determine 𝑝(𝑛) (0, 0) explicitly, first note that 𝑝(2𝑘+1) (0, 0) = 0, as it is impossible
to come back to the origin with an odd number of steps. So we are left to compute
𝑝(2𝑘) (0, 0), for every 𝑘 ≥ 1. Among the 22𝑘 possible walks, those which start and end
to 0 have an equal amount of steps to the right and steps to the left. Such a walk is
then the same thing as the choice of 𝑘 objects among 2𝑘. Thus

𝑝(2𝑘) (0, 0) = 1
22𝑘

(
2𝑘
𝑘

)
=

1
22𝑘

(2𝑘)!
(𝑘!)2 .
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Using Stirling’s formula, 𝑘! ≃
√

2𝜋𝑘𝑘𝑘e−𝑘, we obtain

𝑝(2𝑘) (0, 0) ≃ 1
22𝑘

√
2𝜋2𝑘(2𝑘)2𝑘e−2𝑘

2𝜋𝑘𝑘2𝑘e−2𝑘 =
1

√
𝜋𝑘

and since
∞∑︁
𝑘=1

1
√
𝜋𝑘

= ∞, it follows that
∞∑︁
𝑛=1

𝑝(𝑛) (0, 0) =
∞∑︁
𝑘=1

𝑝(2𝑘) (0, 0) = ∞. Therefore,

the chain is recurrent, and its exponential decay rate equals 1 by Corollary 2.16.
(ii) A similar reasoning can be done for the simple random walk on ℤ2. Among the
42𝑘 walks of length 2𝑘, those which come back to the origin in 2𝑘 steps must count
an equal amount of steps to the left and to the right, and an equal amount of steps
upwards and steps downwards. Such a walk is then the same as the choice of an
integer 𝑗 ∈ {0, . . . , 𝑛}, the choice of 𝑗 steps to the right, and 𝑛 − 𝑗 steps upwards. It
then follows that

𝑝(2𝑘) (0, 0) = 1
42𝑘

𝑘∑︁
𝑗=0

(
2𝑘
2 𝑗

) (
2 𝑗

𝑗

) (
2(𝑘 − 𝑗)
𝑘 − 𝑗

)
=

1
42𝑘

𝑘∑︁
𝑗=0

(2𝑘)!
(2 𝑗)!(2𝑘 − 2 𝑗)!

(2 𝑗)!
( 𝑗!)2

(2𝑘 − 2 𝑗)!
((𝑘 − 𝑗)!)2

=
1

42𝑘
(2𝑘)!
(𝑘!)2

𝑘∑︁
𝑗=0

(
𝑘

𝑗

) (
𝑘

𝑘 − 𝑗

)
=

(
1

22𝑘

(
2𝑘
𝑘

))2

where the last equality relies on the combinatorial identity
𝑘∑︁
𝑗=0

(
𝑘

𝑗

) (
𝑘

𝑘 − 𝑗

)
=

(
2𝑘
𝑘

)
.

Using point (i) above, we deduce that

𝑝(2𝑘) (0, 0) ≃ 1
𝜋𝑘

.

Since
∞∑︁
𝑘=1

1
𝜋𝑘

diverges, so does 𝐺(0, 0|1), proving that the simple random walk on ℤ2

is recurrent. In particular, 𝜌 = 1.

Similar techniques and combinatorial identities establish that, for ℤ3, the return
probability 𝑝(2𝑘) (0, 0) behaves, up to a constant, as 1

𝑘3/2 . More generally, for the simple
random walk on ℤ𝑑, 𝑝(2𝑘) (0, 0) behaves as 1

𝑘𝑑/2 , and therefore the walk is recurrent if
and only if 𝑑 ∈ {1, 2}. This is a celebrated result, known as Polya’s theorem. See for
instance [5, chapter I.B], and [9] for the original article of Polya.
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This result also provides a counter-example to the converse of Corollary 2.16: the
simple random walk on ℤ3 has exponential decay rate equals to 1, but is transient.
Hence, for a random walk, the value of 𝜌 does not characterise its recurrent or tran-
sient behaviour. Here are some reasons to explain this difference.

First of all, observe that the difference between the recurrence of the random walk
on ℤ2 and the transience of the walk on ℤ3 is due to the difference between the nature
of the two series

∞∑︁
𝑛=1

1
𝑛
,

∞∑︁
𝑛=1

1
𝑛3/2 .

and the difference between these two series is subtle. The second converges while the
first one diverges, but this only relies on the fact that the sequence 1

𝑛3/2 goes to 0 a lit-
tle bit faster than 1

𝑛
. Comparing the reasoning above for ℤ2 and the one for ℤ3 in [5],

these two sequences are the consequences of the number of neighbours and dimen-
sions in each model when computing probabilities. Broadly speaking, in dimension
𝑑 ≥ 3, the random walk has too much space to escape. This already suggests the
recurrent/transient behaviour is dependent of the geometry of the lattice at a small
scale.

On the other hand, the exponential decay rate ignores completely the difference
that can occur between two sequences such as 1

𝑛
and 1

𝑛3/2 , and gives only information
on the (non-)exponential behaviour of the return probabilities 𝑝(𝑛) (𝑒, 𝑒). Therefore, its
values can only reflect a property of the large-scale geometry of the underlying lattice.
It turns out amenability of a group is the good notion to consider for measuring its size,
when regarding it from far away, and can thus traduce a (non-)exponential behaviour
of 𝑝(𝑛) (𝑒, 𝑒). This is what Kesten proved in 1959, and what we will establish in the
sequel.

Lastly, to avoid parity problems we encountered in the two examples above, we will
now work mostly with 𝑝(2𝑛) (𝑒, 𝑒) rather than 𝑝(𝑛) (𝑒, 𝑒). It does not affect the exponen-
tial decay rate, since

lim sup
𝑛→∞

𝑝(𝑛) (𝑒, 𝑒) 1
𝑛 = lim sup

𝑛→∞
𝑝(2𝑛) (𝑒, 𝑒) 1

2𝑛 .

Indeed, we have 𝑝(2𝑛) (𝑒, 𝑒) ≥ 𝑝(𝑛) (𝑒, 𝑒)𝑝(𝑛) (𝑒, 𝑒) = (𝑝(𝑛) (𝑒, 𝑒))2, so taking the 2𝑛−th
root and the limsup, we obtain lim sup

𝑛→∞
𝑝(𝑛) (𝑒, 𝑒) 1

𝑛 ≤ lim sup
𝑛→∞

𝑝(2𝑛) (𝑒, 𝑒) 1
2𝑛 . The reverse

inequality comes from the definition of the limsup.

2.3 The Markov operator

In this part, we introduce the key tool for proving Kesten’s theorem. The operator
we construct is the bridge between the amenability condition (𝐶) we derived above,
and the exponential decay rate of a random walk.
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From now on, we only consider the simple random walk on a finitely generated
group 𝐺, with a symmetric generating set 𝑆, such that 𝑒 ∉ 𝑆.

Definition 2.18. The operator 𝑀 : ℓ 2(𝐺) −→ ℓ 2(𝐺), defined as

(𝑀𝑓 ) (𝑔) ··=
1
|𝑆|

∑︁
𝑠∈𝑆

𝑓 (𝑠−1𝑔)

for all 𝑓 ∈ ℓ 2(𝐺) and 𝑔 ∈ 𝐺, is called the Markov operator associated to the
simple random walk.

In words, this definition says the value of 𝑀𝑓 at 𝑔 is obtained by averaging the
values of 𝑓 at the nearest neighbours of 𝑔, group elements of the form 𝑠−1𝑔, 𝑠 ∈ 𝑆.

First, let us show that 𝑀 indeed has good properties. It will allow us to invoque
what we proved in Section 1.

Lemma 2.19. (i) 𝑀 is linear.

(ii) 𝑀 is a bounded operator, and ∥𝑀∥ ≤ 1.

(iii) 𝑀 is self-adjoint.

Proof. (i) Fix 𝑓 , 𝑔 ∈ ℓ 2(𝐺), 𝜆 ∈ ℂ and ℎ ∈ 𝐺. Then

𝑀 (𝜆𝑓 + 𝑔) (ℎ) = 1
|𝑆|

∑︁
𝑠∈𝑆

(𝜆𝑓 + 𝑔) (𝑠−1ℎ)

=
𝜆

|𝑆|
∑︁
𝑠∈𝑆

𝑓 (𝑠−1ℎ) + 1
|𝑆|

∑︁
𝑠∈𝑆

𝑔(𝑠−1ℎ)

= 𝜆(𝑀𝑓 ) (ℎ) + (𝑀𝑔) (ℎ)
= (𝜆𝑀𝑓 + 𝑀𝑔) (ℎ).

Henceforth 𝑀 (𝜆𝑓 + 𝑔) = 𝜆𝑀𝑓 + 𝑀𝑔, for every 𝑓 , 𝑔 ∈ ℓ 2(𝐺), 𝜆 ∈ ℂ.
(ii) Let 𝑓 ∈ ℓ 2(𝐺), 𝑓 ≠ 0. We compute that

∥𝑀𝑓 ∥2
2 =

∑︁
𝑔∈𝐺

| (𝑀𝑓 ) (𝑔) |2

=
∑︁
𝑔∈𝐺

���� 1
|𝑆|

∑︁
𝑠∈𝑆

𝑓 (𝑠−1𝑔)
����2

=
∑︁
𝑔∈𝐺

1
|𝑆|2

����∑︁
𝑠∈𝑆

𝑓 (𝑠−1𝑔)
����2
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≤
∑︁
𝑔∈𝐺

1
|𝑆|

∑︁
𝑠∈𝑆

𝑓 (𝑠−1𝑔)2

=
1
|𝑆|

∑︁
𝑠∈𝑆

∑︁
𝑔∈𝐺

𝑓 (𝑠−1𝑔)2

= ∥ 𝑓 ∥2
2

by using Cauchy-Schwarz inequality first and thereafter Fubini’s theorem, which ap-
plies since ∥ 𝑓 ∥2 < ∞ and all terms are positive, to permute the order of summation.
Hence ∥𝑀𝑓 ∥2 ≤ ∥ 𝑓 ∥2 for all 𝑓 ∈ ℓ 2(𝐺), 𝑓 ≠ 0, and we deduce ∥𝑀∥ ≤ 1.
(iii) We must show that ⟨𝑀𝑓 , 𝑔⟩ = ⟨𝑓 , 𝑀𝑔⟩ for every pair 𝑓 , 𝑔 ∈ ℓ 2(𝐺). First, suppose
that 𝑓 , 𝑔 are both ℝ−valued and positive. Expanding the definition of 𝑀, one has

⟨𝑀𝑓 , 𝑔⟩ =
∑︁
ℎ∈𝐺

(𝑀𝑓 ) (ℎ)𝑔(ℎ)

=
∑︁
ℎ∈𝐺

1
|𝑆|

∑︁
𝑠∈𝑆

𝑓 (𝑠−1ℎ)𝑔(ℎ)

=
∑︁
𝑠∈𝑆

1
|𝑆|

∑︁
ℎ∈𝐺

𝑓 (𝑠−1ℎ)𝑔(ℎ)

=
∑︁
𝑠∈𝑆

1
|𝑆|

∑︁
𝑡∈𝐺

𝑓 (𝑡)𝑔(𝑠𝑡)

=
∑︁
𝑡∈𝐺

1
|𝑆|

∑︁
𝑠∈𝑆

𝑓 (𝑡)𝑔(𝑠−1𝑡)

=
∑︁
𝑡∈𝐺

𝑓 (𝑡) (𝑀𝑔) (𝑡)

= ⟨𝑓 , 𝑀𝑔⟩

and each permutation of sums is justified by Fubini’s theorem, which we may use since
all terms are positive. The fifth equality relies on the fact that 𝑆 is symmetric, so we
can safely change the argument of 𝑔 without altering the value of the sum.

Thus ⟨𝑀𝑓 , 𝑔⟩ = ⟨𝑓 , 𝑀𝑔⟩ holds for positive ℝ−valued functions. From there, we
get the equality for arbitrary ℝ−valued functions, by splitting 𝑓 = 𝑓 + − 𝑓 − and 𝑔 =

𝑔+ − 𝑔− into their positive and negative parts. Lastly, this also implies the equality
for ℂ−valued functions, by writing every 𝑓 ∈ ℓ 2(𝐺) as 𝑓 = Re( 𝑓 ) + 𝑖Im( 𝑓 ), and using
linearity of the inner product in the first variable, and anti-linearity in the second. □

Remark 2.20. Point (iii) above and an induction on 𝑛 ≥ 1 implies that 𝑀𝑛 is self-
adjoint for all 𝑛 ≥ 1.

A crucial property of 𝑀 is that one can recover the transition probabilities of the
model from it.
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Proposition 2.21. For every 𝑔, ℎ ∈ 𝐺, ⟨𝑀𝛿ℎ, 𝛿𝑔⟩ = 𝑝(𝑔, ℎ).
More generally, ⟨𝑀𝑛𝛿ℎ, 𝛿𝑔⟩ = 𝑝(𝑛) (𝑔, ℎ) for every 𝑔, ℎ ∈ 𝐺, 𝑛 ≥ 1.

Proof. By the definition of 𝑀, we have

⟨𝑀𝛿ℎ, 𝛿𝑔⟩ =
∑︁
𝑡∈𝐺

(𝑀𝛿ℎ) (𝑡)𝛿𝑔 (𝑡) =
∑︁
𝑡∈𝐺

1
|𝑆|

∑︁
𝑠∈𝑆

𝛿ℎ(𝑠−1𝑡)𝛿𝑔 (𝑡).

If 𝑔 and ℎ are not related by a generator, there is no 𝑠 ∈ 𝑆 such that 𝛿ℎ(𝑠−1𝑡)𝛿𝑔 (𝑡) ≠ 0,
so ⟨𝑀𝛿ℎ, 𝛿𝑔⟩ = 0, which agrees with 𝑝(𝑔, ℎ).

On the other hand, if 𝑔 and ℎ are nearest-neighbour, there is exactly one 𝑠 ∈ 𝑆 such
that 𝑔 = 𝑠ℎ, and ⟨𝑀𝛿ℎ, 𝛿𝑔⟩ reduces to 1

|𝑆| = 𝑝(𝑔, ℎ), which shows the first identity.
For the second, we do an induction on 𝑛 ≥ 1. The case 𝑛 = 1 is handled. Suppose then
𝑛 > 1, and that the identity holds up to the 𝑛−th power of 𝑀. Using self-adjointness
of 𝑀 and the induction hypothesis, one has

⟨𝑀𝑛+1𝛿ℎ, 𝛿𝑔⟩ = ⟨𝑀𝑛𝛿ℎ, 𝑀𝛿𝑔⟩

= ⟨𝑀𝑛𝛿ℎ,
1
|𝑆|

∑︁
𝑠∈𝑆

𝑠𝛿𝑔⟩

=
1
|𝑆|

∑︁
𝑠∈𝑆

⟨𝑀𝑛𝛿ℎ, 𝛿𝑠𝑔⟩

=
1
|𝑆|

∑︁
𝑠∈𝑆

𝑝(𝑛) (𝑠𝑔, ℎ)

=
∑︁
𝑠∈𝑆

𝑝(𝑔, 𝑠𝑔)𝑝(𝑛) (𝑠𝑔, ℎ)

= 𝑝(𝑛+1) (𝑔, ℎ)
and the last equality follows from the total probability formula. This concludes the
inductive step, and also our proof. □

From this, we derive an important consequence, namely that (𝑝(2𝑛) (𝑒, 𝑒))𝑛≥1 has
the behaviour we expect. This also justify the terminology "decay rate".

Corollary 2.22. The sequence (𝑝(2𝑛) (𝑒, 𝑒))𝑛≥0 is decreasing.

Proof. Let 𝑛 ≥ 0. By the previous proposition, and the self-adjointness of 𝑀𝑛+2 we can
write 𝑝(2𝑛+2) (𝑒, 𝑒) = ⟨𝑀2𝑛+2𝛿𝑒, 𝛿𝑒⟩ = ⟨𝑀𝑛𝛿𝑒, 𝑀

𝑛+2𝛿𝑒⟩. The Cauchy-Schwarz inequality
then implies

𝑝(2𝑛+2) (𝑒, 𝑒) ≤ ∥𝑀𝑛𝛿𝑒∥∥𝑀𝑛+2𝛿𝑒∥ ≤ ∥𝑀𝑛𝛿𝑒∥2 = 𝑝(2𝑛) (𝑒, 𝑒)
using that ∥𝑀2∥ ≤ 1. □
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In fact, 𝑀 contains much more information about the model than just the transition
probabilities. To prove the next proposition, we appeal the next basic fact from real
analysis.

Lemma 2.23. Let (𝑢𝑛)𝑛≥0 be a sequence of positive real numbers.
It holds that

lim inf
𝑛→∞

𝑢𝑛+1
𝑢𝑛

≤ lim inf
𝑛→∞

𝑢
1
𝑛
𝑛 ≤ lim sup

𝑛→∞
𝑢

1
𝑛
𝑛 ≤ lim sup

𝑛→∞

𝑢𝑛+1
𝑢𝑛

.

Proof. Let ℓ ··= lim sup
𝑛→∞

𝑢𝑛+1
𝑢𝑛

, and 𝜀 > 0. There exists 𝑁 ∈ ℕ such that 𝑢𝑛+1
𝑢𝑛

< ℓ + 𝜀 if

𝑛 ≥ 𝑁. Hence, for 𝑛 ≥ 𝑁, one has
𝑢𝑛

𝑢𝑁

=
𝑢𝑛

𝑢𝑛−1

𝑢𝑛−1
𝑢𝑛−2

· · · 𝑢𝑁+1
𝑢𝑁

< (ℓ + 𝜀)𝑛−𝑁

which implies 𝑢
1
𝑛
𝑛 < 𝑢

1
𝑛

𝑁
(ℓ + 𝜀)1−𝑁

𝑛 = (ℓ + 𝜀)
(

𝑢𝑁

(ℓ+𝜀)𝑁

) 1
𝑛

. Taking the limsup of both sides,

it follows that
lim sup
𝑛→∞

𝑢
1
𝑛
𝑛 < ℓ + 𝜀.

As 𝜀 > 0 was arbitrary, we get the third inequality. The first one is shown similarly,
and the second is obvious. □

Additionally, recall that a function 𝑓 ∈ ℓ 2(𝐺) is finitely supported if |supp( 𝑓 ) | < ∞,
where supp( 𝑓 ) ··= {𝑥 ∈ 𝐺 | 𝑓 (𝑥) ≠ 0}.

Here is the link between the Markov operator and the simple random walk on 𝐺.

Proposition 2.24. One has ∥𝑀∥ = 𝜌.

Proof. To begin, note that for all 𝑛 ≥ 1, 𝑝(2𝑛) (𝑒, 𝑒) = ⟨𝑀2𝑛𝛿𝑒, 𝛿𝑒⟩ by Proposition
2.21. This implies 𝑝(2𝑛) (𝑒, 𝑒) ≤ ∥𝑀2𝑛∥ by Proposition 1.12, which applies since 𝑀2𝑛

is bounded and self-adjoint. Thus 𝑝(2𝑛) (𝑒, 𝑒) 1
2𝑛 ≤ ∥𝑀2𝑛∥ 1

2𝑛 for all 𝑛 ≥ 1, and taking the
limsup yields

𝜌 = lim sup
𝑛→∞

𝑝(2𝑛) (𝑒, 𝑒) 1
2𝑛 ≤ lim sup

𝑛→∞
∥𝑀2𝑛∥ 1

2𝑛 = lim
𝑛→∞

∥𝑀2𝑛∥ 1
2𝑛 = ∥𝑀∥

where the last equality comes from Proposition 1.15. Hence 𝜌 ≤ ∥𝑀∥.
For the reverse inequality, fix 𝑓 ∈ ℓ 2(𝐺) finitely supported. Note that by Cauchy-

Schwarz, and the fact that 𝑀 is self-adjoint, we have

∥𝑀𝑛+1 𝑓 ∥2 = ⟨𝑀𝑛+1 𝑓 , 𝑀𝑛+1 𝑓 ⟩ = ⟨𝑀𝑛 𝑓 , 𝑀𝑛+2 𝑓 ⟩ ≤ ∥𝑀𝑛 𝑓 ∥∥𝑀𝑛+2 𝑓 ∥
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so the sequence
( ∥𝑀𝑛+1 𝑓 ∥

∥𝑀𝑛 𝑓 ∥
)
𝑛≥0 is increasing. It is also bounded from above by 1, so its

limit exists, and
∥𝑀𝑓 ∥
∥ 𝑓 ∥ ≤ lim

𝑛→∞
∥𝑀𝑛+1 𝑓 ∥
∥𝑀𝑛 𝑓 ∥ .

Now lim
𝑛→∞

∥𝑀𝑛+1 𝑓 ∥
∥𝑀𝑛 𝑓 ∥ = lim

𝑛→∞
∥𝑀𝑛 𝑓 ∥ 1

𝑛 by Lemma 2.23, so we are left to show this last
limit is less than or equal to 𝜌. To do this, using self-adjointness of 𝑀 we write

∥𝑀𝑛 𝑓 ∥2 = ⟨𝑀2𝑛 𝑓 , 𝑓 ⟩ =
∑︁
𝑔∈𝐺

(𝑀2𝑛 𝑓 ) (𝑔) 𝑓 (𝑔) =
∑︁
𝑔∈𝐺

∑︁
ℎ∈𝐺

𝑝(2𝑛) (𝑔, ℎ) 𝑓 (ℎ) 𝑓 (𝑔)

Since 𝑓 has finite support, both sums run over a finite set of elements. Let 𝜀 > 0.
By Lemma 2.12, the radius of convergence of 𝐺(𝑔, ℎ|𝑧) does not depend on 𝑔, ℎ, so
for each pair 𝑔, ℎ ∈ 𝐺 giving a contribution to the sum, there is 𝑁𝑔,ℎ ∈ ℕ such that
𝑝(2𝑛) (𝑔, ℎ) 1

2𝑛 ≤ 𝜌 + 𝜀 for all 𝑛 ≥ 𝑁𝑔,ℎ. Letting 𝑁 ··= max
𝑔,ℎ

𝑁𝑔,ℎ, we get

∥𝑀𝑛 𝑓 ∥2 ≤ (𝜌 + 𝜀)2𝑛𝐶( 𝑓 )

where 𝐶( 𝑓 ) < ∞ is a constant depending only on 𝑓 . Taking the 2𝑛−th root and the
limsup, it follows that

∥𝑀𝑓 ∥
∥ 𝑓 ∥ ≤ lim

𝑛→∞
∥𝑀𝑛 𝑓 ∥ 1

𝑛 ≤ 𝜌 + 𝜀.

As 𝜀 > 0 is arbitrary, this yields ∥𝑀𝑓 ∥
∥ 𝑓 ∥ ≤ 𝜌 for every 𝑓 ∈ ℓ 2(𝐺) finitely supported.

Since the latter subspace is dense in ℓ 2(𝐺) (cf. [4, theorem 4.3.1]), we can use Remark
2.25 to conclude that ∥𝑀∥ ≤ 𝜌, as claimed. □

Remark 2.25. To complete the above proof, it remains to see that

∥𝑀∥ = sup
{
∥𝑀𝑓 ∥
∥ 𝑓 ∥ | 𝑓 ≠ 0, |supp( 𝑓 ) | < ∞

}
.

Denote 𝑟 ··= sup
𝑓≠0

∥𝑀𝑓 ∥
∥ 𝑓 ∥ and 𝑟′ the same supremum but running over finitely supported

non-zero functions. Clearly, one has 𝑟′ ≤ 𝑟. For the reverse inequality, fix 𝑓 ≠ 0 and
𝜀 > 0. By density, we may pick 𝑓 ′ ∈ ℓ 2(𝐺) finitely supported such that ∥ 𝑓 − 𝑓 ′∥2 < 𝜀

𝑟+𝑟′ .
It implies

∥ 𝑓 ′∥2 = ∥ 𝑓 ′ − 𝑓 + 𝑓 ∥2 ≤ ∥ 𝑓 ′ − 𝑓 ∥2 + ∥ 𝑓 ∥2 <
𝜀

𝑟 + 𝑟′
+ ∥ 𝑓 ∥2

and it follows that

∥𝑀𝑓 ∥2 = ∥𝑀𝑓 − 𝑀𝑓 ′ + 𝑀𝑓 ′∥2
≤ ∥𝑀𝑓 − 𝑀𝑓 ′∥2 + ∥𝑀𝑓 ′∥2
≤ 𝑟∥ 𝑓 − 𝑓 ′∥2 + 𝑟′∥ 𝑓 ′∥2
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< 𝑟𝜀 + 𝑟′
(

𝜀

𝑟 + 𝑟′
+ ∥ 𝑓 ∥2

)
= 𝜀 + 𝑟′∥ 𝑓 ∥2

using the definitions of 𝑟 and 𝑟′ for the second inequality. Letting 𝜀 → 0, we obtain
∥𝑀𝑓 ∥2
∥ 𝑓 ∥2

≤ 𝑟′ for all 𝑓 ≠ 0, and thus 𝑟 ≤ 𝑟′. This shows 𝑟 = 𝑟′, as claimed.

Since 𝜌 = ∥𝑀∥ = lim
𝑛→∞

∥𝑀𝑛∥ 1
𝑛 , 𝜌 is often also called the spectral radius of the

random walk.

2.4 Kesten’s theorem

Here is the statement and the proof of Kesten’s theorem.

Theorem 2.26. A group 𝐺 is amenable if and only if 𝜌 = 1.

Proof. Suppose first that 𝐺 is amenable. By Corollary 2.7, 𝐺 has the property (𝐶),
which exactly says the Markov operator has ∥𝑀∥ ≥ 1. On the other hand, ∥𝑀∥ ≤ 1,
so ∥𝑀∥ = 1, and by Proposition 2.24, we get 𝜌 = ∥𝑀∥ = 1.

Conversely, let us assume 𝐺 is not amenable. Again, by Corollary 2.7, 𝐺 does not
have (𝐶), and this implies that ∥𝑀∥ < 1. As ∥𝑀∥ = 𝜌, we get 𝜌 < 1, and this finishes
the proof. □

In words, as already hinted above, Kesten’s theorem tells us the group is non-
amenable if and only if the return probabilities at the origin 𝑝(𝑛) (𝑒, 𝑒) decay exponen-
tially fast. This is quite intuitive: a non-amenable group has an expansive geometry,
and its Cayley graph escapes very fast to infinity. In that situation, it is highly un-
expected to come back to the origin after a large amount of steps, so 𝑝(𝑛) (𝑒, 𝑒) must
decrease fast enough.

A direct implication of this characterization is a huge family of transient random
walks, namely all those on non-amenable finitely generated groups.

Corollary 2.27. If 𝐺 is not amenable, then the simple random walk on 𝐺 is
transient.

Proof. Since 𝐺 is non-amenable, 𝜌 < 1, and the contrapositive of Corollary 2.16 gives
the claim. □
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Propositions 2.21 and 2.24 in the previous subsection shows the Markov operator
contains a lot of relevant informations of the model of simple random walks on finitely
generated groups. This allows one to widely use tools from functional analysis and
Hilbert spaces theory to tackle questions in probability theory. Corollary 2.27 above
illustrates well this idea.

2.5 Simple random walks on free groups

In general, computing the exact value of the spectral radius is difficult, if not out of
reach, and figuring out whether an interesting group is amenable or not via Kesten’s
criterion is in general hard. There is however one class of groups for which an explicit
formula for the spectral radius is known, namely non-abelian free groups. This is also
a result due to Kesten [8], that we establish in this part. The first step towards the
proof is to introduce two other sequences of probabilities.

For 𝑥, 𝑦 ∈ 𝐺, let 𝑓 (𝑛) (𝑥, 𝑦) be the probability to reach 𝑦 from 𝑥 in 𝑛 steps for the first
time, and let 𝑢(𝑛) (𝑥, 𝑦) be the probability to reach 𝑦 from 𝑥 for the first time in 𝑛 steps,
with at least one non-trivial step. More precisely, we set 𝑢(0) (𝑥, 𝑥) = 0. Note that on
the other hand 𝑓 (0) (𝑥, 𝑥) = 1.

Note also that 𝑓 (𝑛) (𝑥, 𝑥) = 0 for all 𝑛 ≥ 1, and 𝑓 (𝑛) (𝑥, 𝑦) = 𝑢(𝑛) (𝑥, 𝑦) for all 𝑛 ≥ 0 if
𝑥 ≠ 𝑦. For 𝑧 ∈ ℂ, we write

𝐹 (𝑥, 𝑦|𝑧) ··=
∞∑︁
𝑛=0

𝑓 (𝑛) (𝑥, 𝑦)𝑧𝑛, 𝑈 (𝑥, 𝑦|𝑧) ··=
∞∑︁
𝑛=0

𝑢(𝑛) (𝑥, 𝑦)𝑧𝑛

for the corresponding generating functions. They satisfy non-trivial relations with the
Green function.

Lemma 2.28. Let 𝑥, 𝑦 ∈ 𝐺, 𝑧 ∈ ℂ. Then the following holds.

(i) 𝐺(𝑥, 𝑦|𝑧) = 𝐹 (𝑥, 𝑦|𝑧)𝐺(𝑦, 𝑦|𝑧).

(ii) 𝐺(𝑥, 𝑥|𝑧) = 1
1 −𝑈 (𝑥, 𝑥|𝑧) .

(iii) 𝑈 (𝑥, 𝑥|𝑧) =
∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦)𝑧𝐹 (𝑦, 𝑥|𝑧).

(iv) 𝐹 (𝑥, 𝑦|𝑧) =
∑︁
𝑤∈𝐺

𝑝(𝑥, 𝑤)𝑧𝐹 (𝑤, 𝑦|𝑧) if 𝑥 ≠ 𝑦.
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Proof. (i) We start by proving that

𝑝(𝑛) (𝑥, 𝑦) =
𝑛∑︁

𝑘=0
𝑓 (𝑘) (𝑥, 𝑦)𝑝(𝑛−𝑘) (𝑦, 𝑦). (1)

If 𝑥 = 𝑦, this clearly holds, since 𝑓 (𝑘) (𝑥, 𝑥) = 0 for 𝑘 ≥ 1. We then consider the case
𝑥 ≠ 𝑦, and we prove the equality by induction on 𝑛 ≥ 0.

Suppose 𝑛 = 0. Then both the left and the right hand sides equal 0, as 𝑓 (0) (𝑥, 𝑦) =
𝑝(0) (𝑥, 𝑦) = 0. Now let 𝑛 ≥ 1, and suppose the equality holds up to 𝑛−1. By condition-
ing on the first step, and using the induction hypothesis, we get

𝑝(𝑛) (𝑥, 𝑦) =
∑︁
𝑧∈𝐺

𝑝(𝑥, 𝑧)𝑝(𝑛−1) (𝑧, 𝑦)

=
∑︁
𝑧∈𝐺

𝑝(𝑥, 𝑧)
( 𝑛−1∑︁
𝑘=0

𝑓 (𝑘) (𝑧, 𝑦)𝑝(𝑛−1−𝑘) (𝑦, 𝑦)
)

=

𝑛−1∑︁
𝑘=0

(∑︁
𝑧∈𝐺

𝑝(𝑥, 𝑧) 𝑓 (𝑘) (𝑧, 𝑦)︸                    ︷︷                    ︸
=𝑓 (𝑘+1) (𝑥,𝑦)

)
𝑝(𝑛−1−𝑘) (𝑦, 𝑦)

=

𝑛∑︁
𝑘=1

𝑓 (𝑘) (𝑥, 𝑦)𝑝(𝑛−𝑘) (𝑦, 𝑦)

=

𝑛∑︁
𝑘=0

𝑓 (𝑘) (𝑥, 𝑦)𝑝(𝑛−𝑘) (𝑦, 𝑦)

since 𝑓 (0) (𝑥, 𝑦) = 0. The third equality relies on Fubini’s theorem, to permute the order
of summation. Hence we have (1) for every 𝑛 ≥ 0. By the definition of multiplication
of generating functions, this equality exactly means

𝐺(𝑥, 𝑦|𝑧) = 𝐹 (𝑥, 𝑦|𝑧)𝐺(𝑦, 𝑦|𝑧).

(ii) Observe that, again conditioning on the first step, one has

𝑢(𝑘) (𝑥, 𝑥) =
∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦)𝑢(𝑘−1) (𝑦, 𝑥) =
∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦) 𝑓 (𝑘−1) (𝑦, 𝑥) (2)

and this holds for all 𝑘 ≥ 0 if we set 𝑓 (−1) (𝑥, 𝑦) ··= 0 for all 𝑥, 𝑦 ∈ 𝐺. Now for all 𝑛 ≥ 1,
we compute that

𝑛∑︁
𝑘=0

𝑢(𝑘) (𝑥, 𝑥)𝑝(𝑛−𝑘) (𝑥, 𝑥) =
𝑛∑︁

𝑘=0

(∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦) 𝑓 (𝑘−1) (𝑦, 𝑥)
)
𝑝(𝑛−𝑘) (𝑥, 𝑥)

=
∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦)
𝑛∑︁

𝑘=1
𝑓 (𝑘−1) (𝑦, 𝑥)𝑝(𝑛−𝑘) (𝑥, 𝑥)
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=
∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦)
𝑛−1∑︁
𝑘=0

𝑓 (𝑘) (𝑦, 𝑥)𝑝(𝑛−1−𝑘) (𝑥, 𝑥)

=
∑︁
𝑦∈𝐺

𝑝(𝑥, 𝑦)𝑝(𝑛−1) (𝑦, 𝑥)

= 𝑝(𝑛) (𝑥, 𝑥)

using (2) for the first equality, Fubini’s theorem for the second to permute sums, (1)
for the fourth and the total probability formula for the last one. This means the 𝑛−th
coefficient of 𝐺(𝑥, 𝑥|𝑧) coincides with the 𝑛−th coefficient of𝑈 (𝑥, 𝑥|𝑧)𝐺(𝑥, 𝑥|𝑧) for every
𝑛 ≥ 1, while for 𝑛 = 0 we have 𝑝(0) (𝑥, 𝑥) = 1 and 𝑢(0) (𝑥, 𝑥)𝑝(0) (𝑥, 𝑥) = 0. Hence

𝐺(𝑥, 𝑥|𝑧) −𝑈 (𝑥, 𝑥|𝑧)𝐺(𝑥, 𝑥|𝑧) = 1

as announced.
(iii) This follows from (2).
(iv) We use the same strategy as before. Let 𝑥 ≠ 𝑦. Then one has∑︁

𝑤∈𝐺
𝑝(𝑥, 𝑤)𝑧𝐹 (𝑤, 𝑦|𝑧) =

∑︁
𝑤∈𝐺

𝑝(𝑥, 𝑤)𝑧
( ∞∑︁
𝑘=0

𝑓 (𝑘) (𝑤, 𝑦)𝑧𝑘
)

=

∞∑︁
𝑘=0

( ∑︁
𝑤∈𝐺

𝑝(𝑥, 𝑤) 𝑓 (𝑘) (𝑤, 𝑦)︸                      ︷︷                      ︸
=𝑓 (𝑘+1) (𝑥,𝑦)

)
𝑧𝑘+1

=

∞∑︁
𝑘=1

𝑓 (𝑘) (𝑥, 𝑦)𝑧𝑘

= 𝐹 (𝑥, 𝑦|𝑧)

using that 𝑓 (0) (𝑥, 𝑦) = 0 if 𝑥 ≠ 𝑦, and Fubini’s theorem for permuting the two sums.
This shows (iv) and finishes the proof. □

The above results hold for any finitely generated group. However, if we restrict to
non-abelian free groups, whose Cayley graphs have a tree structure, the generating
function 𝐹 (𝑥, 𝑦|𝑧) has an additional property of "transitivity", leading to an explicit
formula for the Green function 𝐺(𝑥, 𝑦|𝑧), and thus also for its radius of convergence.

Hence, from now on, let 𝐺 = 𝐹𝑘 be the non-abelian free group of rank 𝑘, and

𝑆 = {𝑎1, . . . , 𝑎𝑘, 𝑎
−1
1 , . . . , 𝑎−1

𝑘 }

be the standard generating set for 𝐺.

Lemma 2.29. The graph Cay(𝐺, 𝑆) is an infinite 2𝑘−regular tree.
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Proof. It is clear Cay(𝐺, 𝑆) is infinite and 2𝑘−regular. Moreover, 𝑆 generates 𝐺, so
Cay(𝐺, 𝑆) is connected. Towards a contradiction, suppose there is a cycle of length
𝑛 ≥ 3. We then have a sequence of edges

𝑒1 = (𝑢, 𝑠1), 𝑒2 = (𝑢𝑠1, 𝑠2), . . . , 𝑒𝑛 = (𝑢𝑠1 . . . 𝑠𝑛−1, 𝑠𝑛)

and 𝑢 = 𝑢𝑠1 . . . 𝑠𝑛. Henceforth, 𝑠1 . . . 𝑠𝑛 = 𝑒 is a non-trivial relation in 𝐺 = 𝐹𝑘, which
is not free. This is the desired contradiction, and we have the claim. □

In a tree, for any two vertices 𝑥, 𝑦 there exists a unique path 𝑐(𝑥, 𝑦) between 𝑥 and
𝑦. The length of the path 𝑐(𝑥, 𝑦) is the number of edges it contains, and we denote it
d(𝑥, 𝑦).

Here is the transitivity property announced above.

Lemma 2.30. Let 𝑥, 𝑦 ∈ 𝑉 (Cay(𝐺, 𝑆)).
If 𝑤 ∈ 𝑐(𝑥, 𝑦), then 𝐹 (𝑥, 𝑦|𝑧) = 𝐹 (𝑥, 𝑤|𝑧)𝐹 (𝑤, 𝑦|𝑧).

Proof. Since the path 𝑐(𝑥, 𝑦) between 𝑥 and 𝑦 is unique, the random walk must pass
to 𝑤 when going from 𝑥 to 𝑦. Conditioning with respect to the first visit to 𝑤, this gives

𝑓 (𝑛) =
𝑛∑︁

𝑘=0
𝑓 (𝑘) (𝑥, 𝑤) 𝑓 (𝑛−𝑘) (𝑤, 𝑦)

for all 𝑛 ≥ 0, and thus 𝐹 (𝑥, 𝑦|𝑧) = 𝐹 (𝑥, 𝑤|𝑧)𝐹 (𝑤, 𝑦|𝑧). □

All we need is in place to determine the spectral radius of the simple random walk
on a free group.

Theorem 2.31. For the simple random walk on 𝐺 = 𝐹𝑘, one has 𝜌 =
√

2𝑘−1
𝑘

.

Proof. First we note that 𝑓 (𝑘) (𝑥, 𝑦) = 𝑓 (𝑘) (𝑧, 𝑤) if 𝑥 ∼ 𝑦 and 𝑣 ∼ 𝑤 are two pairs
of neighbours. Hence 𝐹 (𝑥, 𝑦|𝑧) = 𝐹 (𝑣, 𝑤|𝑧), and for brievety we denote this series
by 𝐹 (𝑧). Now for every 𝑥, 𝑦 ∈ 𝐺, there is a unique path 𝑐(𝑥, 𝑦) of length d(𝑥, 𝑦) in
Cay(𝐺, 𝑆) connecting them, so Lemma 2.30 gives

𝐹 (𝑥, 𝑦|𝑧) = 𝐹 (𝑧)d(𝑥,𝑦) .

Suppose 𝑥, 𝑦 ∈ 𝐺 are neighbours. Then, by Lemma 2.28(iv), we obtain

𝐹 (𝑧) = 𝐹 (𝑥, 𝑦|𝑧) =
∑︁
𝑤∼𝑥

1
2𝑘

𝑧𝐹 (𝑤, 𝑦|𝑧) =
∑︁
𝑤∼𝑥

1
2𝑘

𝑧𝐹 (𝑧)d(𝑤,𝑦) .
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In this sum, one term corresponds to 𝑤 = 𝑦, and in this case d(𝑤, 𝑦) = 0. For the
others 2𝑘 − 1 neighbours of 𝑥, we have d(𝑤, 𝑦) = 2, and thus

𝐹 (𝑧) = 1
2𝑘

𝑧 + 2𝑘 − 1
2𝑘

𝑧𝐹 (𝑧)2.

Solving this quadratic equation, we end out with

𝐹 (𝑧) = 𝑘 ±
√︁
𝑘2 − (2𝑘 − 1)𝑧2

(2𝑘 − 1)𝑧
and since 𝐹 (0) = 0 by definition, 0 must be an apparent singularity, so this imposes

𝐹 (𝑧) = 𝑘 −
√︁
𝑘2 − (2𝑘 − 1)𝑧2

(2𝑘 − 1)𝑧 .

From there, part (iii) of Lemma 2.28 implies 𝑈 (𝑥, 𝑥|𝑧) = 𝑧𝐹 (𝑧) = 𝑘−
√

𝑘2−(2𝑘−1)𝑧2

2𝑘−1 , and
part (ii) then yields

𝐺(𝑥, 𝑥|𝑧) = 1
1 −𝑈 (𝑥, 𝑥|𝑧) =

2𝑘 − 1
(𝑘 − 1) +

√︁
𝑘2 − (2𝑘 − 1)𝑧2

.

Finally, by point (i) of Lemma 2.28, we have 𝐺(𝑥, 𝑦|𝑧) = 𝐹 (𝑧)d(𝑥,𝑦)𝐺(𝑦, 𝑦|𝑧) and it
follows that

𝐺(𝑥, 𝑦|𝑧) = 2𝑘 − 1
(𝑘 − 1) +

√︁
𝑘2 − (2𝑘 − 1)𝑧2

(
𝑘 −

√︁
𝑘2 − (2𝑘 − 1)𝑧2

(2𝑘 − 1)𝑧

)d(𝑥,𝑦)
.

for all 𝑥, 𝑦 ∈ 𝐺. To obtain the radius of convergence 𝑅 of 𝐺(𝑥, 𝑦|𝑧), we use Pringsheim’s
theorem [11, chapter 8.1], which assures 𝑅 equals the smallest positive singularity of
𝐺(𝑥, 𝑦|𝑧). From the expression above, this singularity is 𝑘√

2𝑘−1
, and hence

𝜌 =
1
𝑅

=

√
2𝑘 − 1
𝑘

as announced. This concludes the proof. □

From this result, we derive two immediate consequences.

Corollary 2.32. (i) 𝐹𝑘 is not amenable, for all 𝑘 ≥ 2.
(ii) The simple random walk on 𝐹𝑘 is transient, for all 𝑘 ≥ 2.

Proof. (i) If 𝑘 ≥ 2, then 𝜌(𝐹𝑘) =
√

2𝑘−1
𝑘

< 1, so 𝐹𝑘 is not amenable by Kesten’s criterion.
(ii) This follows from (i) and Corollary 2.27. □

Remark 2.33. Here, we considered only simple random walks on free groups, whose
Cayley graphs are 2𝑘−regular trees. Similar results as the ones above can be shown
in fact for 𝑘−regular trees. See [13, chapter 1.1] for further details.
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3. Boundaries for random walks on groups

The purpose of this section is to establish a second criterion relating the amenabil-
ity of a group to the behaviour of random walks it carries. Kesten’s theorem showed us
amenability of a finitely generated group is equivalent to a slow decrease of the return
probabilities at the origin. On the other hand, we are now going to be interested in the
behaviour of a random walk at infinity, and we will sketch the theoretic foundations
of what is called the boundary theory for random walks on groups.

The result we will prove, at least partially, states that a countable group is amenable
if and only it carries a probability measure such that the associated Poisson boundary
is trivial.

3.1 Harmonic functions on groups

Let 𝐺 be a countable discrete group, and 𝜇 be a probability measure on 𝐺.

Definition 3.1. A function 𝑓 : 𝐺 −→ ℝ is 𝜇−harmonic if

𝑓 (𝑔) =
∑︁
ℎ∈𝐺

𝑓 (𝑔ℎ)𝜇(ℎ)

for all 𝑔 ∈ 𝐺.

In words, a 𝜇−harmonic function has a sort of mean value property: the value of 𝑓
at 𝑔 ∈ 𝐺 is the average, according to the distribution 𝜇, of the values of 𝑓 around 𝑔.

This definition appeals several remarks.

Remark 3.2. (i) For a function 𝑓 on 𝐺, being 𝜇−harmonic depends on 𝜇.
(ii) The sum appearing in the right hand side of Definition 3.1 is absolutely convergent
in at least two cases: if 𝜇 is finitely supported, and if 𝑓 is bounded. In the sequel, we
will assume nothing about the support of 𝜇, but we will restrict our purposes to the
case 𝑓 ∈ ℓ∞(𝐺), and all sums involved exist then.

Without delay, let us provide easy examples of harmonic functions.

Example 3.3. (i) For any pair (𝐺, 𝜇), constant functions are always 𝜇−harmonic. In-
deed, if 𝑓 (𝑥) = 𝑎 ∈ ℝ for all 𝑔 ∈ 𝐺, we have∑︁

ℎ∈𝐺
𝑓 (𝑔ℎ)𝜇(ℎ) =

∑︁
ℎ∈𝐺

𝑎𝜇(ℎ) = 𝑎
∑︁
ℎ∈𝐺

𝜇(ℎ) = 𝑎 = 𝑓 (𝑔)

for all 𝑔 ∈ 𝐺, whence 𝑓 is 𝜇−harmonic.
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(ii) Let 𝜇 = 𝛿𝑒. Then, if 𝑓 is a function on 𝐺 and 𝑔 ∈ 𝐺, we obtain directly∑︁
ℎ∈𝐺

𝑓 (𝑔ℎ)𝛿𝑒(ℎ) = 𝑓 (𝑔)

so any function is 𝜇−harmonic.
(iii) Let 𝐺 = ℤ, and 𝜇 = 1

2𝛿−1 + 1
2𝛿1. We claim that 𝑓 : ℤ −→ ℝ is 𝜇−harmonic if and

only if 𝑓 (𝑛) = 𝑎𝑛 + 𝑏 for some 𝑎, 𝑏 ∈ ℝ, and all 𝑛 ∈ ℤ. First of all, if 𝑓 has this form, it
is easily seen to be 𝜇−harmonic, since then

1
2
𝑓 (𝑛 − 1) + 1

2
𝑓 (𝑛 + 1) = 1

2
(𝑎(𝑛 − 1) + 𝑏) + 1

2
(𝑎(𝑛 + 1) + 𝑏) = 𝑎𝑛 + 𝑏 = 𝑓 (𝑛)

for all 𝑛 ∈ ℤ. Conversely, suppose 𝑓 is 𝜇−harmonic. Let 𝑎 ··= 𝑓 (1)− 𝑓 (0), and 𝑏 ··= 𝑓 (0).
We show that 𝑓 (𝑛) = 𝑎𝑛 + 𝑏 by induction on 𝑛 ≥ 0. For 𝑛 = 0, 1, the equality holds by
definition of 𝑎 and 𝑏. If furthermore it holds up to 𝑛 ≥ 2, then 𝑓 being 𝜇−harmonic
implies

𝑓 (𝑛 + 1) = 2
(
𝑓 (𝑛) − 1

2
𝑓 (𝑛 − 1)

)
= 2(𝑎𝑛 + 𝑏) − (𝑎(𝑛 − 1) + 𝑏) = 𝑎(𝑛 + 1) + 𝑏

showing that 𝑓 (𝑛) = 𝑎𝑛 + 𝑏 for all 𝑛 ≥ 0. The same can be done for 𝑛 < 0, using this
time 𝑓 (𝑛 − 1) = 2( 𝑓 (𝑛) − 1

2 𝑓 (𝑛 + 1)). This proves the claim.

As promised, we will now focus on bounded 𝜇−harmonic functions. We then intro-
duce

ℓ∞𝜇 (𝐺) ··= {𝑓 ∈ ℓ∞(𝐺) | 𝑓 is 𝜇-harmonic}.
This subset of ℓ∞(𝐺) has the following properties.

Lemma 3.4. (i) ℓ∞𝜇 (𝐺) is a convex subspace of ℓ∞(𝐺).

(ii) ℓ∞𝜇 (𝐺) is closed with respect to the topology induced by ∥ · ∥∞.

Proof. (i) To start, note that as observed above constant functions are in ℓ∞𝜇 (𝐺), which
is therefore not empty. In particular, the zero function is 𝜇−harmonic. Next, suppose
𝑓1, 𝑓2 ∈ ℓ∞𝜇 (𝐺), and 𝛼,𝛽 ∈ ℝ. Fix 𝑔 ∈ 𝐺. Then we have

(𝛼𝑓1 + 𝛽 𝑓2) (𝑔) = 𝛼𝑓1(𝑔) + 𝛽 𝑓2(𝑔)
= 𝛼

∑︁
ℎ∈𝐺

𝑓1(𝑔ℎ)𝜇(ℎ) + 𝛽
∑︁
ℎ∈𝐺

𝑓2(𝑔ℎ)𝜇(ℎ)

=
∑︁
ℎ∈𝐺

(𝛼𝑓1 + 𝛽 𝑓2) (𝑔ℎ)𝜇(ℎ)
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using that 𝑓1, 𝑓2 are 𝜇−harmonic. This proves that𝛼𝑓1+𝛽 𝑓2 is 𝜇−harmonic, and ℓ∞𝜇 (𝐺)
is a subspace of ℓ∞(𝐺). The particular case where𝛼 = 𝑡,𝛽 = 1− 𝑡 with 𝑡 ∈ [0, 1] proves
it is convex.
(ii) Fix a sequence ( 𝑓𝑛)𝑛≥0 in ℓ∞𝜇 (𝐺) converging to 𝑓 in ℓ∞𝜇 (𝐺). Fix 𝜀 > 0. The hypothesis
implies there is 𝑁 ∈ ℕ such that ∥ 𝑓 − 𝑓𝑁 ∥∞ < 𝜀. Then for 𝑔 ∈ 𝐺 one has����𝑓 (𝑔) − ∑︁

ℎ∈𝐺
𝑓 (𝑔ℎ)𝜇(ℎ)

���� = ����𝑓 (𝑔) − 𝑓𝑁 (𝑔) + 𝑓𝑁 (𝑔) −
∑︁
ℎ∈𝐺

𝑓 (𝑔ℎ)𝜇(ℎ)
����

=

����𝑓 (𝑔) − 𝑓𝑁 (𝑔) +
∑︁
ℎ∈𝐺

𝑓𝑁 (𝑔ℎ)𝜇(ℎ) −
∑︁
ℎ∈𝐺

𝑓 (𝑔ℎ)𝜇(ℎ)
����

< | 𝑓 (𝑔) − 𝑓𝑁 (𝑔) |︸             ︷︷             ︸
≤∥ 𝑓−𝑓𝑁 ∥∞

+
∑︁
ℎ∈𝐺

| 𝑓𝑁 (𝑔ℎ) − 𝑓 (𝑔ℎ) |︸                 ︷︷                 ︸
≤∥ 𝑓−𝑓𝑁 ∥∞

𝜇(ℎ)

≤ 2∥ 𝑓 − 𝑓𝑁 ∥∞
< 2𝜀.

As 𝜀 > 0 was arbitrary, this yields to 𝑓 (𝑔) =
∑︁
ℎ∈𝐺

𝑓 (𝑔ℎ)𝜇(ℎ) for all 𝑔 ∈ 𝐺, so 𝑓 ∈ ℓ∞𝜇 (𝐺),

which is therefore closed in ℓ∞𝜇 (𝐺). □

In particular, the last point of the lemma implies that ℓ∞𝜇 (𝐺) is a Banach space, as
a closed subset of a complete space is complete.

That subspace being defined, we can now formulate a Liouville property for 𝐺.

Definition 3.5. A pair (𝐺, 𝜇) is Liouville if ℓ∞𝜇 (𝐺) = ℝ · 1𝐺.

By Example 3.3(iii) a 𝜇−harmonic function on ℤ, for 𝜇 = 1
2𝛿−1 + 1

2𝛿1, is affine. In
particular, if it is bounded, then it must be constant. This shows (ℤ, 𝜇) is Liouville.

Remark 3.6. As observed before, the class of harmonic functions on 𝐺 for a given
measure depends strongly on the measure, and thus so does the space ℓ∞𝜇 (𝐺). In
particular, it is not true that if a pair (𝐺, 𝜇) is Liouville, then (𝐺, 𝜇′) is Liouville for
any other probability measure 𝜇′ on 𝐺. Consider for instance 𝐺 = ℤ, 𝜇 = 1

2𝛿−1 + 1
2𝛿1

and 𝜇′ = 𝛿0.

In fact, there is a deep relation between the class of 𝜇−harmonic functions on a
group 𝐺 and its (non-)amenability. This relation, established by Kaimanovich and
Vershik [6], can be stated as follows. It will be one of our main ingredients to under-
stand functions on the Poisson boundary, in the next section.
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Theorem 3.7. Let 𝐺 be a countable discrete group.
𝐺 is amenable if and only if there exists a probability measure 𝜇 on 𝐺 such that
(𝐺, 𝜇) is Liouville.

3.2 The Poisson boundary

Let 𝐺 be a countable discrete group, and let 𝜇 be a probability measure on 𝐺.
Consider the random walk on 𝐺 driven by 𝜇. Out of the infinite product space 𝐺ℕ∗

together with the product measure 𝜇ℕ∗, consider the map

𝑃 : 𝐺ℕ∗ −→ 𝐺ℕ

(ℎ𝑛)𝑛≥1 ↦−→ (𝑤𝑛)𝑛≥0

where 𝑤0 ··= 𝑒 and 𝑤𝑛 ··= ℎ1 . . . ℎ𝑛 for all 𝑛 ≥ 1.
On the target space, let F denote the product 𝜎−algebra, generated by cylinder

sets, and ℙ be the probability measure given by the push-forward of 𝜇ℕ under 𝑃.

Equivalently, ℙ is the product measure
∞⊗
𝑛=0

𝜇∗𝑛, with the convention that 𝜇∗0 = 𝛿𝑒

is the Dirac mass at the neutral element 𝑒 ∈ 𝐺.
We usually call (𝐺ℕ,ℙ) the path space, while the initial product (𝐺ℕ∗

, 𝜇ℕ∗) is the
step space, or the space of increments.

On the path space, we also define the time shift

𝑇 : 𝐺ℕ −→ 𝐺ℕ

(𝑤𝑛)𝑛≥0 ↦−→ (𝑤𝑛+1)𝑛≥0.

This is a F−measurable map, since for 𝑔 ∈ 𝐺 and 𝑘 ≥ 1 fixed, 𝑇−1(𝐶𝑘
𝑔) = 𝐶𝑘−1

𝑔 ∈ F
while 𝑇−1(𝐶0

𝑔) = ∅. When looking at the behaviour of the random walk at infinity,
the first thing to do is to identify those that coincide after a certain time. For two
trajectories 𝑥 = (𝑥𝑛)𝑛≥0, 𝑦 = (𝑦𝑛)𝑛≥0, we set

𝑥 ∼ 𝑦 ⇐⇒ ∃𝑛, 𝑚 ≥ 0, 𝑇𝑛𝑥 = 𝑇𝑚𝑦.

The first thing to check is the following.

Lemma 3.8. ∼ is an equivalence relation.

Proof. Reflexivity is clear by choosing for instance 𝑛 = 𝑚 = 0, and symmetry is given
by the definition itself. For the transitivity, suppose 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧 for three trajec-
tories 𝑥, 𝑦, 𝑧. We then have integers 𝑛, 𝑚, 𝑘, 𝑝 ≥ 0 such that

𝑇𝑛𝑥 = 𝑇𝑚𝑦, 𝑇𝑘𝑦 = 𝑇 𝑝𝑧
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and, without loss of generality, we may suppose 𝑚 ≥ 𝑘. It follows that

𝑇𝑛𝑥 = 𝑇𝑚𝑦 = 𝑇𝑚−𝑘(𝑇𝑘𝑦) = 𝑇𝑚−𝑘(𝑇 𝑝𝑧) = 𝑇𝑚+𝑝−𝑘𝑧

whence 𝑥 ∼ 𝑧, concluding the proof. □

In the sequel, we will be interested in the subspace of 𝐿∞(𝐺ℕ,ℙ) consisting of
𝑇−invariant functions, namely functions 𝑓 ∈ 𝐿∞(𝐺ℕ,ℙ) such that 𝑓 ◦ 𝑇 = 𝑓 . This
subspace will be denoted 𝐿∞(𝐺ℕ,ℙ)𝑇 .

Let us now introduce stationary measures. Fix (𝐵, 𝜈) a measure space, on which 𝐺

acts measurably. Recall that 𝜇∗𝜈 is the push-forward of 𝜇⊗𝜈 by the map 𝐺×𝐵 −→ 𝐵,
(𝑔, 𝑏) ↦−→ 𝑔𝑏.

Definition 3.9. The measure 𝜈 is 𝜇−stationary if 𝜇 ∗ 𝜈 = 𝜈.

Among all 𝐺−spaces carrying a 𝜇−stationary measure, one has a universal prop-
erty, distinguishing it from the others. This is the so called Poisson boundary, whose
existence and properties will be admitted. Further comments on this construction,
which relies on measurable partitions and the Rokhlin’s correspondence can be found
in [7], or in [2, appendix I].

Theorem 3.10. There exists a measure 𝐺−space (𝐵𝑃𝐹 , 𝜈𝑃𝐹), with 𝜈𝑃𝐹 being
𝜇−stationary, and a measurable, 𝐺−equivariant, 𝑇−invariant map

bnd : (𝐺ℕ,ℙ) −→ (𝐵𝑃𝐹 , 𝜈𝑃𝐹)

such that 𝜈𝑃𝐹 = bnd∗(ℙ), and satisfying the following universal property: for
every 𝐺−space (𝐵,𝜆) with a 𝜇−stationary measure 𝜆 and a 𝐺−equivariant,
𝑇−invariant map 𝜑 : (𝐺ℕ,ℙ) −→ (𝐵,𝜆) such that 𝜆 = 𝜑∗(ℙ), there exists a
𝐺−equivariant map 𝜓 : (𝐵𝑃𝐹 , 𝜈𝑃𝐹) −→ (𝐵,𝜆) such that 𝜓 ◦ bnd = 𝜑.
Moreover, the induced map

𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹) −→ 𝐿∞(𝐺ℕ,ℙ)𝑇

given by precomposition with bnd is an isomorphism.

3.3 The Poisson transform

In this part, we define a correspondence between the 𝜇−harmonic functions on 𝐺

and the measurable bounded functions on a 𝐺−space equipped with a 𝜇−stationary
measure. We call it the Poisson transform.
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Definition 3.11. Let 𝜈 be a 𝜇−stationary probability measure on a 𝐺−space 𝐵.
The Poisson transform is the map

�̂� : 𝐿∞(𝐵, 𝜈) −→ ℓ∞𝜇 (𝐺)
𝑓 ↦−→ �̂� 𝑓

where (�̂� 𝑓 ) (𝑔) ··=
∫
𝐵

𝑓 (𝑔𝑥) d𝜈(𝑥), for all 𝑔 ∈ 𝐺.

This is a well-defined map. To see this, first observe that for all 𝑓 ∈ 𝐿∞(𝐵, 𝜈) and
𝑔 ∈ 𝐺, one has ∫

𝐵

𝑓 (𝑔𝑥) d(𝜇 ∗ 𝜈) (𝑥) =
∑︁
ℎ∈𝐺

𝜇(ℎ)
∫
𝐵

𝑓 (𝑔ℎ𝑥) d𝜈(𝑥).

If 𝑓 = 1𝐴, for a measurable 𝐴 ⊂ 𝐵, the equality holds since∫
𝐵

1𝐴(𝑔𝑥) d(𝜇 ∗ 𝜈) (𝑥) =
∫
𝐵

1𝑔−1𝐴(𝑥) d(𝜇 ∗ 𝜈) (𝑥)

= (𝜇 ∗ 𝜈) (𝑔−1𝐴)
=
∑︁
ℎ∈𝐺

𝜇(ℎ)𝜈(ℎ−1𝑔−1𝐴)

=
∑︁
ℎ∈𝐺

𝜇(ℎ)𝜈((𝑔ℎ)−1𝐴)

=
∑︁
ℎ∈𝐺

𝜇(ℎ)
∫
𝐵

1(𝑔ℎ)−1𝐴(𝑥) d𝜈(𝑥)

=
∑︁
ℎ∈𝐺

𝜇(ℎ)
∫
𝐵

1𝐴(𝑔ℎ𝑥) d𝜈(𝑥)

and by linearity, it holds for every step functions (finite linear combinations of indica-
tor functions). Since they form a dense subset of 𝐿∞(𝐵, 𝜈), the equality holds for all
𝑓 ∈ 𝐿∞(𝐵, 𝜈).

We can thus prove the next lemma.

Lemma 3.12. The map �̂� : 𝐿∞(𝐵, 𝜈) −→ ℓ∞𝜇 (𝐺) is well-defined, and linear.

Proof. Let 𝑓 ∈ 𝐿∞(𝐵, 𝜈). Then, for a fixed 𝑔 ∈ 𝐺, we compute that∑︁
ℎ∈𝐺

(�̂� 𝑓 ) (𝑔ℎ)𝜇(ℎ) =
∑︁
ℎ∈𝐺

𝜇(ℎ)
∫
𝐵

𝑓 (𝑔ℎ𝑥) d𝜈(𝑥)
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=

∫
𝐵

𝑓 (𝑔𝑥) d(𝜇 ∗ 𝜈) (𝑥)

=

∫
𝐵

𝑓 (𝑔𝑥) d𝜈(𝑥)

= �̂� 𝑓 (𝑔)

since 𝜈 is 𝜇−stationary. This proves that �̂� 𝑓 is 𝜇−harmonic. It is also bounded because
𝑓 is bounded. Hence �̂� is well-defined. Its linearity follows from the pointwise defini-
tion of a linear combination of functions and the fact that the integral is linear. □

To invert the Poisson transform �̂�, the key observation is that a bounded harmonic
function on 𝐺 gives rise to a bounded martingale, built as follows. Let (F𝑛)𝑛≥0 be the
canonical filtration2 associated to the random walk. Fix 𝑓 ∈ ℓ∞𝜇 (𝐺), and define

𝑓𝑛 : 𝐺ℕ −→ ℝ

w = (𝑤𝑛)𝑛≥0 ↦−→ 𝑓 (𝑤𝑛)

for all 𝑛 ≥ 0. The sequence of random variables ( 𝑓𝑛)𝑛≥0 forms a martingale with
respect to the filtration (F𝑛)𝑛≥0, since for a fixed trajectory w = (𝑤𝑛)𝑛≥0, one has

𝔼[ 𝑓𝑛+1(w) |F𝑛] = 𝔼[ 𝑓 (𝑤𝑛+1) |𝑤1, . . . , 𝑤𝑛]
=
∑︁
𝑔∈𝐺

𝑓 (𝑤𝑛𝑔)𝜇(𝑔)

= 𝑓 (𝑤𝑛)
= 𝑓𝑛(w)

using that 𝑓 is 𝜇−harmonic for the third equality. Additionally, 𝑓𝑛 is bounded for all
𝑛 ≥ 0 since 𝑓 is bounded, and this bound is uniform in 𝑛. By the convergence theorem
for bounded martingales (cf. Appendix B), the limit

lim
𝑛→∞

𝑓𝑛(w)

exists for ℙ−almost every path w ∈ 𝐺ℕ, and we thus set

𝐹 : 𝐺ℕ −→ ℝ

w = (𝑤𝑛)𝑛≥0 ↦−→
{

lim
𝑛→∞

𝑓𝑛(w) if the limit exists
0 otherwise

.

Note that 𝐹 is 𝑇−invariant, because

𝐹 (𝑇 (w)) = 𝐹 ((𝑤𝑛+1)𝑛≥0) = lim
𝑛→∞

𝑓 (𝑤𝑛+1) = lim
𝑛→∞

𝑓 (𝑤𝑛) = 𝐹 (w)

2as defined in Appendix B.
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for all w ∈ (𝐺ℕ,ℙ). Hence, by Theorem 3.10, there exists �̃� ∈ 𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹) such that
𝐹 = �̃� ◦ bnd. This way, we define a map

𝑃 : ℓ∞𝜇 (𝐺) −→ 𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹)

sending any 𝜇−harmonic function on 𝐺 to a bounded measurable function on the Pois-
son boundary. We now claim that �̂� and 𝑃 are mutual inverses.

In order to show the last assertion, we will appeal the next basic result from inte-
gration theory.

Lemma 3.13. Let (𝐸,A), (𝐹,B) be two measure spaces, and let 𝜇 be a measure
on 𝐸. Let 𝑓 : 𝐸 −→ 𝐹, 𝑔 : 𝐹 −→ ℝ be measurable. Then it holds that∫

𝐸

𝑔 ◦ 𝑓 (𝑥) d𝜇(𝑥) =
∫
𝐹

𝑔(𝑦) d𝑓∗𝜇(𝑦).

Proof. This is another density argument. Suppose first 𝑔 = 1𝐵 for some 𝐵 ∈ B. Then
one gets directly that∫

𝐹

1𝐵(𝑦) d𝑓∗𝜇(𝑦) = 𝑓∗𝜇(𝐵) = 𝜇( 𝑓 −1(𝐵)) =
∫
𝐸

1𝑓 −1 (𝐵) (𝑥) d𝜇(𝑥) =
∫
𝐸

1𝐵( 𝑓 (𝑥)) d𝜇(𝑥)

and from here the result also holds for finite linear combinations of indicator functions.
Since any positive measurable function is a pointwise increasing limit of a sequence
of step functions, the monotone convergence theorem gives the equality for every mea-
surable 𝑔 : 𝐹 −→ [0,∞). This implies the claim for all functions, by decomposing
𝑔 = 𝑔+ − 𝑔− into its positive and negative parts. □

Proposition 3.14. We have �̂� ◦ 𝑃 = Idℓ∞𝜇 (𝐺) and 𝑃 ◦ �̂� = Id𝐿∞ (𝐵𝑃𝐹 ,𝜈𝑃𝐹).
Consequently, ℓ∞𝜇 (𝐺) � 𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹).

Proof. Let us prove the first identity. The second will be taken for granted, and a proof
can be found in [1, section 2.4].

Let 𝑓 ∈ ℓ∞𝜇 (𝐺), and 𝑔 ∈ 𝐺. For notational convenience, we denote by 𝐹 the lift of
𝑃𝑓 to the path space. We start by computing that

�̂�(𝑃𝑓 ) (𝑔) =
∫
𝐵𝑃𝐹

𝑃𝑓 (𝑔𝑥) d𝜈𝑃𝐹 (𝑥)

=

∫
𝐵𝑃𝐹

(𝑔−1𝑃𝑓 ) (𝑥) d𝜈𝑃𝐹 (𝑥)
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=

∫
𝐺ℕ

((𝑔−1𝑃𝑓 ) ◦ bnd) (w) dℙ(w)

=

∫
𝐺ℕ

𝑔−1(𝑃𝑓 ◦ bnd) (w) dℙ(w)

=

∫
𝐺ℕ

𝐹 (𝑔w) dℙ(w)

=

∫
𝐺ℕ

lim
𝑛→∞

𝑓𝑛(𝑔w) dℙ(w)

= lim
𝑛→∞

∫
𝐺ℕ

𝑓𝑛(𝑔w) dℙ(w)

using the definition of �̂� for the first equality, and the definition of the action of 𝐺 on
a space functions, provided it acts on the domain of those functions, for the second
and the fifth equality. The third equality follows from Lemma 3.13, recalling that
𝜈𝑃𝐹 = bnd∗ℙ, and the fourth one from the 𝐺−equivariance of bnd. The sixth is the
definition of 𝐹, and the last one is due to the dominated convergence theorem, which
we may apply since 𝑓𝑛 is bounded for all 𝑛 ≥ 0 and since constant functions on a
probability space are integrable. Writing a trajectory w ∈ 𝐺ℕ as (𝑒, ℎ1, ℎ1ℎ2, . . . ) with
its sequence of increments h = (ℎ𝑖)𝑖≥1, the last integral equals∫

𝐺ℕ∗
𝑓 (𝑔ℎ1 · · · ℎ𝑛) d𝜇ℕ(h).

Since the integrand depends only on the first 𝑛 coordinates, this reduces to integrate
over the first 𝑛 copies of 𝐺, each endowed with the measure 𝜇, so∫

𝐺ℕ∗
𝑓 (𝑔ℎ1 · · · ℎ𝑛) d𝜇ℕ∗ (h) =

∫
𝐺

· · ·
∫
𝐺

𝑓 (𝑔ℎ1 · · · ℎ𝑛) d𝜇(ℎ1) . . . d𝜇(ℎ𝑛)

=
∑︁
ℎ1∈𝐺

· · ·
∑︁
ℎ𝑛∈𝐺

𝑓 (𝑔ℎ1 · · · ℎ𝑛)𝜇(ℎ𝑛)𝜇(ℎ𝑛−1) · · · 𝜇(ℎ1).

Now, using 𝑛 times the fact that 𝑓 is 𝜇−harmonic, we end it up with 𝑓 (𝑔). This estab-
lishes that

�̂�(𝑃𝑓 ) (𝑔) = lim
𝑛→∞

∫
𝐺ℕ

𝑓𝑛(𝑔w) dℙ(w) = lim
𝑛→∞

𝑓 (𝑔) = 𝑓 (𝑔)

for all 𝑔 ∈ 𝐺, so �̂� ◦ 𝑃( 𝑓 ) = 𝑓 , and the first equality is shown. Note that this implies
linearity of 𝑃, as the inverse of a bijective linear map is linear as well. Thus we have
an isomorphism ℓ∞𝜇 (𝐺) � 𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹). □

We have now all we need to state and prove the main result of this section.

Theorem 3.15. Let 𝐺 be a countable discrete group.
𝐺 is amenable if and only if there exists a probability measure on 𝐺 such that
the associated Poisson boundary (𝐵𝑃𝐹 , 𝜈𝑃𝐹) is trivial.
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Proof. Suppose 𝐺 is amenable. By Theorem 3.7, there exists a probability measure 𝜇
on 𝐺 such that ℓ∞𝜇 (𝐺) reduces to constant functions. By Proposition 3.14, it follows
that 𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹) also reduces to constant functions, which implies that (𝐵𝑃𝐹 , 𝜈𝑃𝐹)
is trivial.

Conversely, suppose there exists 𝜇 such that the associated Poisson boundary is
trivial. Again, it means 𝐿∞(𝐵𝑃𝐹 , 𝜈𝑃𝐹) consists of constant functions, and thus so does
ℓ∞𝜇 (𝐺). Hence (𝐺, 𝜇) is Liouville, and 𝐺 is amenable by Theorem 3.7. □
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A. Riesz representation theorem

In this first appendix, we provide a proof of the Riesz representation theorem, used
to construct adjoint operators on Hilbert spaces.

We begin by introducing orthogonal complements in pre-Hilbert spaces.

Definition A.1. Let H be a pre-Hilbert space. Let 𝑆 ⊂ H be non-empty.
The set

𝑆⊥ = {𝑥 ∈ H | ∀𝑦 ∈ 𝑆, ⟨𝑥, 𝑦⟩ = 0}
is called the orthogonal complement of 𝑆.

Note that 𝑆 need not to be a vector subspace of H . However, its orthogonal com-
plement is always a subspace : if 𝑥, 𝑦 ∈ 𝑆⊥ and 𝜆 ∈ ℂ, then

⟨𝑥 + 𝜆𝑦, 𝑧⟩ = ⟨𝑥, 𝑧⟩ + 𝜆⟨𝑦, 𝑧⟩ = 0

for all 𝑧 ∈ 𝑆, so 𝑥 + 𝜆𝑦 ∈ 𝑆⊥. It is furthermore closed in H , because if (𝑥𝑛)𝑛≥0 in 𝑆⊥

converges to 𝑥 ∈ H , it implies

⟨𝑥, 𝑦⟩ = ⟨ lim
𝑛→∞

𝑥𝑛, 𝑦⟩ = lim
𝑛→∞

⟨𝑥𝑛, 𝑦⟩ = 0

for all 𝑦 ∈ 𝑆, and thus 𝑥 ∈ 𝑆⊥.
Additionally, note that 𝑆 ∩ 𝑆⊥ ⊂ {0}. Indeed, if 𝑥 ∈ 𝑆 ∩ 𝑆⊥, then ∥𝑥∥2 = ⟨𝑥, 𝑥⟩ = 0,

so 𝑥 = 0.
Orthogonal complements are useful because they provide a splitting of H as a di-

rect sum, under a completeness assumption.

Theorem A.2. Let H be a complex Hilbert space, and 𝐺 ⊂ H a closed subspace.
Then every 𝑧 ∈ H can be written uniquely as 𝑧 = 𝑥 + 𝑦 with 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐺⊥.
Moreover, in this decomposition, one has

∥𝑧 − 𝑥∥ = inf
𝑤∈𝐺

∥𝑧 − 𝑤∥, ∥𝑧 − 𝑦∥ = inf
𝑤∈𝐺⊥

∥𝑧 − 𝑤∥.

In this case, we usually write H = 𝐺 ⊕ 𝐺⊥. In addition, the second part of the
theorem says that the elements 𝑥, 𝑦 appearing in the decomposition of 𝑧 ∈ H minimize
the distance of 𝑧 to 𝐺 and 𝐺⊥.

Proof. For the uniqueness part, suppose 𝑧 ∈ H has two decompositions 𝑧 = 𝑥1 + 𝑦1 =

𝑥2 + 𝑦2, 𝑥1, 𝑥2 ∈ 𝐺, with 𝑦1, 𝑦2 ∈ 𝐺⊥. Then one gets

𝑥1 − 𝑥2 = 𝑦1 − 𝑦2 ∈ 𝐺 ∩ 𝐺⊥ = {0}
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so 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2. Let’s focus now on the existence part. For brievety, denote
𝛿 := inf

𝑤∈𝐺
∥𝑧 − 𝑤∥. Let (𝑎𝑛)𝑛≥0 be a sequence in 𝐺 such that lim

𝑛→∞
∥𝑧 − 𝑎𝑛∥ = 𝛿. By the

parallelogram law, for all 𝑛, 𝑚 ≥ 0, we compute

2∥𝑧 − 𝑎𝑛∥2 + 2∥𝑧 − 𝑎𝑚∥2 − ∥𝑎𝑛 − 𝑎𝑚∥2 = ∥2𝑧 − 𝑎𝑛 − 𝑎𝑚∥2 = 4
𝑧 − 𝑎𝑛 + 𝑎𝑚

2

2
≥ 4𝛿2

and the last inequality holds by definition of 𝛿, since 𝑎𝑛+𝑎𝑚

2 ∈ 𝐺. Hence we get

∥𝑎𝑛 − 𝑎𝑚∥2 ≤ 2∥𝑧 − 𝑎𝑛∥2 + 2∥𝑧 − 𝑎𝑚∥2 − 4𝛿2 −−−−−−→
𝑛,𝑚→∞

0

by the choice of the sequence (𝑎𝑛)𝑛≥0. This means (𝑎𝑛)𝑛≥0 is Cauchy, and since H is
complete, it then converges to 𝑥 ∈ H , which must be in 𝐺 since it is a closed subspace,
and 𝑥 ∈ 𝐺 satisfies

∥𝑧 − 𝑥∥ = inf
𝑤∈𝐺

∥𝑧 − 𝑤∥.

This proves the first claim. Now we show that 𝑧 − 𝑥 ∈ 𝐺⊥, and 𝑧 = 𝑥 + (𝑧 − 𝑥) will be
the desired decomposition. Note that if 𝑤 ∈ 𝐺 and 𝜆 ∈ ℂ, then 𝑥 + 𝜆𝑤 ∈ 𝐺, so

∥𝑧 − 𝑥∥2 ≤ ∥𝑧 − 𝑥 − 𝜆𝑤∥2 = ∥𝑧 − 𝑥∥2 + |𝜆 |2∥𝑤∥2 − 2Re𝜆⟨𝑤, 𝑧 − 𝑥⟩
and this leads to

2Re𝜆⟨𝑤, 𝑧 − 𝑥⟩ ≤ |𝜆 |2∥𝑤∥2. (3)
If 𝜆 > 0, then dividing by 𝜆 and taking the limit 𝜆 → 0 provides Re⟨𝑤, 𝑧 − 𝑥⟩ ≤ 0.
On the other hand, replacing 𝜆 by −𝑖𝜆 in (3), taking 𝜆 > 0, dividing by it and letting
𝜆 → 0 provides Im⟨𝑤, 𝑧−𝑥⟩ ≤ 0. 𝐺 being a subspace, these two inequalities also holds
for −𝑤 instead of 𝑤. Finally, we conclude that

Re⟨𝑤, 𝑧 − 𝑥⟩ = Im⟨𝑤, 𝑧 − 𝑥⟩ = 0

and thus ⟨𝑤, 𝑧 − 𝑥⟩ = 0 for all 𝑤 ∈ 𝐺. This proves 𝑧 − 𝑥 ∈ 𝐺⊥, as claimed.
It remains to see that ∥𝑥∥ = ∥𝑧 − (𝑧 − 𝑥)∥ = inf

𝑤∈𝐺⊥
∥𝑧 − 𝑤∥. If 𝑤 ∈ 𝐺⊥, then Pythagore’s

theorem implies

∥𝑧 − 𝑤∥2 = ∥𝑧 − 𝑥 + 𝑥 − 𝑤∥2 = ∥𝑧 − 𝑥 − 𝑤∥2 + ∥𝑥∥2 ≥ ∥𝑥∥2

so ∥𝑧−𝑤∥2 ≥ ∥𝑥∥2 for all 𝑤 ∈ 𝐺⊥, and this is an equality if and only if 𝑤 = 𝑧− 𝑥 ∈ 𝐺⊥,
which proves ∥𝑧 − (𝑧 − 𝑥)∥ = inf

𝑤∈𝐺⊥
∥𝑧 − 𝑤∥. Hence we are done. □

Riesz representation theorem is now a direct consequence of the above.

Theorem A.3. Let H be a complex Hilbert space, and 𝑓 ∈ H ∗.
Then there exists a unique 𝑦 ∈ H such that

𝑓 (𝑥) = ⟨𝑥, 𝑦⟩

for all 𝑥 ∈ H . Moreover, ∥ 𝑓 ∥ = ∥𝑦∥.
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Proof. If 𝑓 ≡ 0, we choose 𝑦 = 0 and we are done. Assume now that 𝑓 is a nontrivial
functional. Since 𝑓 is continuous, Ker( 𝑓 ) is a closed proper subspace ofH , and Ker( 𝑓 )⊥
is not empty. Furthermore, it has dimension at least 1, since otherwise Theorem A.2
would imply H = Ker( 𝑓 ), contradicting the fact that 𝑓 is nontrivial. Let 𝑦0 ∈ Ker( 𝑓 )⊥,
with ∥𝑦∥ = 1. Then every 𝑥 ∈ H can be written

𝑥 = 𝑥 − ⟨𝑥, 𝑦0⟩𝑦0 + ⟨𝑥, 𝑦0⟩𝑦0

and since ⟨𝑥, 𝑦0⟩𝑦0 ∈ Ker( 𝑓 )⊥, this forces 𝑥−⟨𝑥, 𝑦0⟩𝑦0 ∈ Ker( 𝑓 ). Thus 𝑓 (𝑥−⟨𝑥, 𝑦0⟩𝑦0) =
0 for all 𝑥 ∈ H , and it follows that

𝑓 (𝑥) = 𝑓 (⟨𝑥, 𝑦0⟩𝑦0) = ⟨𝑥, 𝑦0⟩ 𝑓 (𝑦0) = ⟨𝑥, 𝑓 (𝑦0)𝑦0⟩

for all 𝑥 ∈ H . We set then 𝑦 := 𝑓 (𝑦0)𝑦0, and the first claim holds. The second follows,
since

| 𝑓 (𝑥) | = |⟨𝑥, 𝑦⟩| ≤ ∥𝑥∥∥𝑦∥
for every 𝑥 ∈ H by Cauchy-Schwarz, giving ∥ 𝑓 ∥ ≤ ∥𝑦∥. For 𝑥 = 𝑦, one has

| 𝑓 (𝑦) | = |⟨𝑦, 𝑦⟩| = ∥𝑦∥2 = ∥𝑦∥∥𝑦∥

and thus ∥ 𝑓 ∥ = ∥𝑦∥. This achieves the proof. □
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B. Convergence of bounded martingales

In this appendix, we briefly introduce the theory of martingales. To do so, we as-
sume known the basic properties of conditional expectation of random variables. These
properties, and eventually their proofs, can be found for instance in [4, chapter 12].

More precisely, we show the almost sure convergence of bounded martingales, re-
sult used above to define the inverse Poisson transform.

Let (Ω, F ,ℙ) be a probability space, and (𝑋𝑛)𝑛≥0 a stochastic process, i.e. a se-
quence of ℝ−valued random variables defined on (Ω, F ,ℙ).

Definition B.1. A filtration on (Ω, F ,ℙ) is a sequence (F𝑛)𝑛≥0 of
sub−𝜎−algebras of F such that

F0 ⊂ F1 ⊂ · · · ⊂ F𝑛 ⊂ . . .

In this case, we call (Ω, F , (F𝑛)𝑛≥0,ℙ) a filtered probability space.
For instance, given (𝑋𝑛)𝑛≥0 a stochastic process, the sequence (F𝑛)𝑛≥0 defined by

F𝑛 := 𝜎(𝑋0, . . . , 𝑋𝑛) is a filtration on Ω, called the canonical filtration.

Definition B.2. A sequence (𝑋𝑛)𝑛≥0 is adapted to the filtration (F𝑛)𝑛≥0 if 𝑋𝑛 is
F𝑛−measurable for all 𝑛 ≥ 0.

In the sequel, we fix an abstract filtered probability space (Ω, F , (F𝑛)𝑛≥0,ℙ). Here
is the main definition.

Definition B.3. A sequence (𝑀𝑛)𝑛≥0 of random variables is a martingale if it
satisfies the following properties :

(i) (𝑀𝑛)𝑛≥0 is adapted.

(ii) 𝔼[|𝑀𝑛 |] < ∞ for all 𝑛 ≥ 0.

(iii) 𝔼[𝑀𝑛+1 |F𝑛] = 𝑀𝑛 for all 𝑛 ≥ 0.

Moreover, (𝑀𝑛)𝑛≥0 is a submartingale if 𝔼[𝑀𝑛+1 |F𝑛] ≥ 𝑀𝑛 for all 𝑛 ≥ 0, and a
supermartingale if 𝔼[𝑀𝑛+1 |F𝑛] ≤ 𝑀𝑛, for all 𝑛 ≥ 0.

In words, a process is a martingale if, in average, its value tomorrow, knowing the
past up to now, is the same as its value today.

Example B.4. (i) Let (𝑋𝑘)𝑘≥0 be a sequence of independent and identically distributed
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random variables, such that 𝔼[|𝑋0 |] < ∞. Set 𝑆𝑛 :=
𝑛∑︁

𝑘=0
𝑋𝑘 and F𝑛 := 𝜎(𝑋0, . . . , 𝑋𝑛).

If 𝔼[𝑋0] = 0, then (𝑆𝑛)𝑛≥0 is a martingale. Indeed, as above, (𝑆𝑛)𝑛≥0 is adapted
to (F𝑛)𝑛≥0. The fact that 𝔼[|𝑋0 |] < ∞ and linearity of expectation implies directly
𝔼[|𝑆𝑛 |] < ∞ for all 𝑛 ≥ 0, and we also have

𝔼[𝑆𝑛+1 |F𝑛] = 𝔼[𝑆𝑛 + 𝑋𝑛+1 |F𝑛] = 𝔼[𝑆𝑛 |F𝑛] + 𝔼[𝑋𝑛+1 |F𝑛] = 𝑆𝑛 + 𝔼[𝑋𝑛+1] = 𝑆𝑛

using linearity of conditional expectation, the fact that 𝑆𝑛 is F𝑛−measurable, and that
𝑋𝑛+1 is independent of 𝑋0, . . . , 𝑋𝑛. The same proof shows that (𝑆𝑛)𝑛≥0 is a submartin-
gale if 𝔼[𝑋0] ≥ 0, and a supermatingale if 𝔼[𝑋0] ≤ 0.
(ii) If (F𝑛)𝑛≥0 is a filtration and 𝑋 ∈ 𝐿1, the sequence (𝑀𝑛)𝑛≥0 defined as 𝑀𝑛 :=
𝔼[𝑋 |F𝑛] is a martingale. By definition, 𝑀𝑛 is F𝑛−measurable, and integrable since
𝔼[|𝑀𝑛 |] = 𝔼[|𝔼[𝑋 |F𝑛] |] ≤ 𝔼[|𝑋 |] < ∞ and 𝑋 ∈ 𝐿1. For the third condition, one
computes that

𝔼[𝑀𝑛+1 |F𝑛] = 𝔼[𝔼[𝑋 |F𝑛+1] |F𝑛] = 𝔼[𝑋 |F𝑛] = 𝑀𝑛

for all 𝑛 ≥ 0, using the tower property for conditional expectations, valid since F𝑛 ⊂
F𝑛+1.
(iii) If (𝑀𝑛)𝑛≥0 and (𝑁𝑛)𝑛≥0 are martingales, then (𝑀𝑛 + 𝑁𝑛)𝑛≥0 is a martingale. The
first and the second properties are straightforward, and for the third one it suffices to
write

𝔼[𝑀𝑛+1 + 𝑁𝑛+1 |F𝑛] = 𝔼[𝑀𝑛+1 |F𝑛] + 𝔼[𝑁𝑛+1 |F𝑛] = 𝑀𝑛 + 𝑁𝑛.

Note that if (𝑀𝑛)𝑛≥0 is a martingale, then 𝔼[𝑀𝑛] = 𝔼[𝔼[𝑀𝑛 |F0]] = 𝔼[𝑀0] for all
𝑛 ≥ 0, i.e. the sequence (𝔼[𝑀𝑛])𝑛≥0 is constant. Likewise, (𝔼[𝑀𝑛])𝑛≥0 is bounded
below (resp. above) by 𝔼[𝑀0] if (𝑀𝑛)𝑛≥0 is a submartingale (resp. supermartingale).

In view of point (iii) above, we now describe how to get submartingales from mar-
tingales. This is an application of Jensen’s inequality for conditional expectations.

Proposition B.5. Let 𝜑 : ℝ −→ [0,∞) be convex.
Let (𝑀𝑛)𝑛≥0 be a martingale, and suppose 𝔼[|𝜑(𝑀𝑛) |] < ∞ for all 𝑛 ≥ 0.
Then (𝜑(𝑀𝑛))𝑛≥0 is a submartingale.

Proof. First note that 𝜑(𝑀𝑛) is F𝑛−measurable, because 𝑀𝑛 is and 𝜑 is measurable.
By Jensen’s inequality, we have

𝔼[𝜑(𝑀𝑛+1) |F𝑛] ≥ 𝜑(𝔼[𝑀𝑛+1 |F𝑛]) = 𝜑(𝑀𝑛)

for all 𝑛 ≥ 0, using that (𝑀𝑛)𝑛≥0 itself is a martingale. This proves the claim. □

Here is another powerful mean for constructing martingales from arbitrary adapted
processes. First, we need the following definition.
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Definition B.6. A collection (𝐻𝑛)𝑛≥1 of ℝ−valued random variables is a pre-
dictable process if 𝐻𝑛 is F𝑛−1−measurable and bounded, for all 𝑛 ≥ 1.

Note that, because of the inclusion F𝑛−1 ⊂ F𝑛, a predictable process is in particular
adapted.

Lemma B.7. Let (𝑀𝑛)𝑛≥0 be an adapted process, and (𝐻𝑛)𝑛≥1 be a predictable
process.
Let 𝐻 · 𝑀 be the process defined as (𝐻 · 𝑀)0 := 0 and

(𝐻 · 𝑀)𝑛 :=
𝑛∑︁

𝑘=1
𝐻𝑘(𝑀𝑘 − 𝑀𝑘−1)

for all 𝑛 ≥ 1. Then the following holds.

(i) If (𝑀𝑛)𝑛≥0 is a martingale, then ((𝐻 · 𝑀)𝑛)𝑛≥0 is a martingale.

(ii) If (𝑀𝑛)𝑛≥0 is a submartingale (resp. supermartingale), and if 𝐻𝑛 ≥ 0 for
all 𝑛 ≥ 1, then ((𝐻 · 𝑀)𝑛)𝑛≥1 is a submartingale (resp. supermartingale).

Proof. (i) Firstly, for all 𝑛 ≥ 0, (𝐻 ·𝑀)𝑛 is F𝑛−measurable as a sum of F𝑛−measurable
random variables, so ((𝐻 · 𝑀)𝑛)𝑛≥0 is adapted. Also, 𝑀𝑛 is integrable and 𝐻𝑛 is
bounded for all 𝑛 ≥ 0, so (𝐻 · 𝑀)𝑛 ∈ 𝐿1 for all 𝑛 ≥ 0. For the third condition, we
have

𝔼[(𝐻 · 𝑀)𝑛+1 |F𝑛] = 𝔼

[ 𝑛+1∑︁
𝑘=1

𝐻𝑘(𝑀𝑘 − 𝑀𝑘−1)
����F𝑛

]
= 𝔼[(𝐻 · 𝑀)𝑛 |F𝑛] + 𝔼[𝐻𝑛+1(𝑀𝑛+1 − 𝑀𝑛) |F𝑛]
= (𝐻 · 𝑀)𝑛 + 𝐻𝑛+1(𝔼[𝑀𝑛+1 |F𝑛] − 𝔼[𝑀𝑛 |F𝑛])
= (𝐻 · 𝑀)𝑛

using the F𝑛−measurability of (𝐻 · 𝑀)𝑛 and 𝐻𝑛+1 for the third equality, and the fact
that (𝑀𝑛)𝑛≥0 is a martingale for the fourth one. This proves (i).
(ii) We can do the same computation as above, and replace the last equality by ≥ (resp.
≤) if (𝑀𝑛) is a submartingale (resp. supermartingale) and 𝐻𝑛 ≥ 0 for all 𝑛 ≥ 0. □

The last notion we introduce is the one of stopping times.

Definition B.8. A random variable 𝑇 : Ω −→ ℕ ∪ {∞} is a stopping time if
{𝑇 = 𝑛} ∈ F𝑛 for all 𝑛 ≥ 0.
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We observe that this is equivalent to require that {𝑇 ≤ 𝑛} ∈ F𝑛 for all 𝑛 ≥ 0.
Indeed, if the latter is true, then {𝑇 = 𝑛} = {𝑇 ≤ 𝑛} \ {𝑇 ≤ 𝑛 − 1} ∈ F𝑛 since also
{𝑇 ≤ 𝑛 − 1} ∈ F𝑛−1 ⊂ F𝑛. Conversely, if 𝑇 is as in Definition B.8, then we can write

{𝑇 ≤ 𝑛} =
𝑛⋃

𝑘=0
{𝑇 = 𝑘}

and use that {𝑇 = 𝑘} ∈ F𝑘 ⊂ F𝑛 for all 𝑘 = 0, . . . , 𝑛 to obtain {𝑇 ≤ 𝑛} ∈ F𝑛, as wanted.
We have now all necessary tools to establish almost sure convergence of bounded

martingales. This relies on the following idea.
First, fix a sequence 𝑥 = (𝑥𝑛)𝑛≥0 of real numbers. For all pairs of real numbers 𝑎 <

𝑏, we define two time sequences (𝑆𝑘(𝑥))𝑘≥1, (𝑇𝑘(𝑥))𝑘≥1 as 𝑆1(𝑥) := inf{𝑛 ≥ 0 | 𝑥𝑛 ≤ 𝑎},
𝑇1(𝑥) := inf{𝑛 ≥ 𝑆1(𝑥) | 𝑥𝑛 ≥ 𝑏} and by induction

𝑆𝑘+1(𝑥) := inf{𝑛 ≥ 𝑇𝑘(𝑥) | 𝑥𝑛 ≤ 𝑎}, 𝑇𝑘+1(𝑥) := inf{𝑛 ≥ 𝑆𝑘+1(𝑥) | 𝑥𝑛 ≥ 𝑏}

with the convention inf ∅ = ∞. Then, for all 𝑛 ≥ 0, we set

𝑁
(𝑛)
𝑎,𝑏

(𝑥) :=
∞∑︁
𝑘=1

1{𝑥∈ℝℕ | 𝑇𝑘 (𝑥)≤𝑛}, 𝑁
(∞)
𝑎,𝑏

(𝑥) :=
∞∑︁
𝑘=1

1{𝑥∈ℝℕ | 𝑇𝑘 (𝑥)<∞}.

𝑁
(𝑛)
𝑎,𝑏

(𝑥) represents the number of climbs beyond the level 𝑏 by the sequence (𝑥𝑛)𝑛≥0

before the rank 𝑛, and 𝑁
(∞)
𝑎,𝑏

(𝑥) is the total number of such climbs.
The next lemma from analysis is the key tool we need.

Lemma B.9. Let (𝑥𝑛)𝑛≥0 ∈ ℝℕ.
If 𝑁 (∞)

𝑎,𝑏
(𝑥) < ∞ for all 𝑎, 𝑏 ∈ ℚ, then (𝑥𝑛)𝑛≥0 converges in ℝ ∪ {±∞}.

Proof. We will prove the contrapositive. Suppose (𝑥𝑛)𝑛≥0 does not converge in ℝ ∪
{±∞}. We distinguish two cases. First, assume (𝑥𝑛)𝑛≥0 is bounded. Then it has an
accumulation by Bolzano-Weierstrass, and since it does not converge, it has at least
two distinct accumulation points, say ℓ ≠ ℓ ′. Without restriction, we may assume
ℓ < ℓ ′. Set then 𝜀 := ℓ ′−ℓ

3 . By density of ℚ in ℝ, we can choose a rational 𝑎 ∈ (ℓ , ℓ + 𝜀)
and a rational 𝑏 ∈ (ℓ ′−𝜀, ℓ ′). Then ℓ and ℓ ′ being accumulation points of the sequence
(𝑥𝑛)𝑛≥0 implies that 𝑁

(∞)
𝑎,𝑏

(𝑥) = ∞, proving the claim in this case.
Suppose now that (𝑥𝑛)𝑛≥0 is not bounded. Here again, we distinguish cases : either the
sequence is bounded below and not above, or bounded above and not below, or neither
bounded below nor above. Let us suppose (𝑥𝑛)𝑛≥0 is bounded below and not bounded
above. Let then

𝐶 := sup{𝑚 ∈ ℝ | ∀𝑛 ∈ ℕ, 𝑥𝑛 > 𝑚}
be the biggest real number that bounds (𝑥𝑛)𝑛≥0 from below. Up to shifting the sequence
by a constant, we can assume that 𝐶 = 0. Now, for any fixed rational number 𝑞 > 0,
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there are infinitely many 𝑛 ∈ ℕ with 0 < 𝑥𝑛 < 𝑞. Indeed, if there were only finitely
many terms 𝑥𝑛1, . . . , 𝑥𝑛𝑘

of the sequence such that 0 < 𝑥𝑛𝑖
< 𝑞, 𝑖 = 1, . . . , 𝑘, we could

set
𝑠 := min

1≤𝑖≤𝑘
𝑥𝑛𝑘

and the whole sequence would be bounded below by 𝑠 > 0 = 𝐶, contradicting the
choice of 𝐶. Thus we can choose an arbitrary 𝑞 ∈ ℚ, 𝑞 > 0 and there is infinitely many
terms of the sequence lying in (0, 𝑞). Since (𝑥𝑛)𝑛≥0 is not bounded above, there is also
infinitely many terms of the sequence above 𝑞′ := 𝑞 + 1 ∈ ℚ. Thus 𝑁

(∞)
𝑞,𝑞′ (𝑥) = ∞.

The case where (𝑥𝑛)𝑛≥0 is bounded above and not below is handled in a similar manner.
Lastly, if the sequence is neither bounded below nor above, for all 𝑎 < 𝑏 ∈ ℚ, there
are infinitely many terms of the sequence below 𝑎 and infinitely many terms above 𝑏.
Hence 𝑁

(∞)
𝑎,𝑏

(𝑥) = ∞ as well, and we are done. □

Let us clarify the notations we will use below. For (𝑀𝑛)𝑛≥0 a martingale and an
integer 𝑘 ≥ 0, we will denote 𝑁

(𝑘)
𝑎,𝑏

the random variable defined by

𝑁
(𝑘)
𝑎,𝑏

(𝜔) := 𝑁
(𝑘)
𝑎,𝑏

((𝑀𝑛(𝜔))𝑛≥0)

for all 𝜔 ∈ Ω. Also, 𝑁 (∞)
𝑎,𝑏

is defined as 𝑁
(∞)
𝑎,𝑏

(𝜔) := 𝑁
(∞)
𝑎,𝑏

((𝑀𝑛(𝜔))𝑛≥0) for all 𝜔 ∈ Ω.
Likewise, for each 𝑘 ≥ 1, we define two random variables 𝑆𝑘, 𝑇𝑘 : Ω −→ ℕ ∪ {±∞}

by
𝑆𝑘(𝜔) := 𝑆𝑘((𝑀𝑛(𝜔))𝑛≥0), 𝑇𝑘(𝜔) := 𝑇𝑘((𝑀𝑛(𝜔))𝑛≥0)

for any 𝜔 ∈ Ω. It turns out 𝑆𝑘 and 𝑇𝑘 are both stopping times. Indeed, for instance
one can write

{𝑇𝑘 ≤ 𝑛} =
⋃

0≤𝑚1<𝑛1<···<𝑚𝑘<𝑛𝑘≤𝑛
{𝑋𝑚1 ≤ 𝑎, 𝑋𝑛1 ≥ 𝑏, . . . , 𝑋𝑚𝑘

≤ 𝑎, 𝑋𝑛𝑘
≥ 𝑏}

which implies that {𝑇𝑘 ≤ 𝑛} ∈ F𝑛 for all 𝑛 ≥ 0.
The convergence theorem will essentially follow from the next proposition. Recall

that for two integers 𝑛, 𝑚 ∈ ℕ we denote 𝑚 ∧ 𝑛 := min(𝑛, 𝑚), and for a real number
𝑥 ∈ ℝ, we denote (𝑥)+ its positive part defined as (𝑥)+ := 𝑥 if 𝑥 > 0, and (𝑥)+ = 0
otherwise.

Proposition B.10. Let (𝑀𝑛)𝑛≥0 be a martingale.
For all 𝑎, 𝑏 ∈ ℝ, for all 𝑛 ≥ 0, we have

(𝑏 − 𝑎)𝔼[𝑁 (𝑛)
𝑎,𝑏

] ≤ 𝔼[(𝑀𝑛 − 𝑎)+] − 𝔼[(𝑀0 − 𝑎)+].
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Proof. Let 𝐻𝑛 :=
∞∑︁
𝑘=1

1{𝑆𝑘<𝑛≤𝑇𝑘}. Observe that

{𝑆𝑘 < 𝑛} = {𝑆𝑘 ≤ 𝑛 − 1} ∈ F𝑛−1, {𝑛 ≤ 𝑇𝑘} = {𝑇𝑘 ≤ 𝑛 − 1}𝑐 ∈ F𝑛−1.

and it follows that 1{𝑆𝑘<𝑛≤𝑇𝑘} is F𝑛−1−measurable, and thus so is 𝐻𝑛. Hence (𝐻𝑛)𝑛≥1
is a predictable process. Finally, let �̃�𝑛 := (𝑀𝑛 − 𝑎)+, which is a submartingale by
Proposition B.5. For 𝑛 ≥ 1, we compute

(𝐻 · �̃�)𝑛 =

𝑛∑︁
𝑘=1

𝐻𝑘(�̃�𝑘 − �̃�𝑘−1)

=

𝑛∑︁
𝑖=1

∞∑︁
𝑘=1

1{𝑆𝑘<𝑖≤𝑇𝑘} (�̃�𝑖 − �̃�𝑖−1)

=

∞∑︁
𝑘=1

∞∑︁
𝑖=1

1{𝑆𝑘∧𝑛<𝑖≤𝑇𝑘∧𝑛} (�̃�𝑖 − �̃�𝑖−1)

=

∞∑︁
𝑘=1

𝑇𝑘∧𝑛∑︁
𝑖=(𝑆𝑘∧𝑛)+1

(�̃�𝑖 − �̃�𝑖−1)

=

𝑁
(𝑛)
𝑎,𝑏∑︁

𝑘=1
�̃�𝑇𝑘∧𝑛 − �̃�𝑆𝑘∧𝑛

≥ (𝑏 − 𝑎)𝑁 (𝑛)
𝑎,𝑏

.

We also have �̃�𝑛 − �̃�0 = (1 · �̃�)𝑛 = (𝐻 · �̃�)𝑛 + ((1 − 𝐻) · �̃�)𝑛. Since 1 − 𝐻 ≥ 0
and since (�̃�𝑛)𝑛≥0 is a submartingale, Lemma B.7 assures ((1 − 𝐻) · �̃�)𝑛≥0 still is a
submartingale, and in particular

𝔼[((1 − 𝐻) · �̃�)𝑛] ≥ 𝔼[((1 − 𝐻) · �̃�)0] = 0

for all 𝑛 ≥ 0. We then conclude

𝔼[�̃�𝑛 − �̃�0] = 𝔼[(𝐻 · �̃�)𝑛] + 𝔼[((1 − 𝐻) · �̃�)𝑛] ≥ (𝑏 − 𝑎)𝔼[𝑁 (𝑛)
𝑎,𝑏

]

for all 𝑛 ≥ 0, as announced. □

This proposition implies that bounded martingales have almost surely a finite num-
ber of climbs in a closed bounded interval.

Corollary B.11. Let (𝑀𝑛)𝑛≥0 be a martingale. Suppose there is 𝐶 > 0 such that
𝔼[|𝑀𝑛 |] < 𝐶, for all 𝑛 ≥ 0. Then, for all 𝑎, 𝑏 ∈ ℝ, 𝔼[𝑁 (∞)

𝑎,𝑏
] < ∞.

In particular, 𝑁 (∞)
𝑎,𝑏

< ∞ almost surely.
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Proof. Under the hypothesis of boundedness, one gets

𝔼[(𝑀𝑛 − 𝑎)+] ≤ 𝔼[|𝑀𝑛 − 𝑎|] ≤ |𝑎| + 𝐶

and it follows from Proposition B.10 that

𝔼[𝑁 (𝑛)
𝑎,𝑏

] ≤ 𝔼[(𝑀𝑛 − 𝑎)+] − 𝔼[(𝑀0 − 𝑎)+]
𝑏 − 𝑎

≤ |𝑎| + 𝐶

𝑏 − 𝑎

for all 𝑛 ∈ ℕ, 𝑎, 𝑏 ∈ ℝ. The dominated convergence theorem then implies

𝔼[𝑁 (∞)
𝑎,𝑏

] = lim
𝑛→∞

𝔼[𝑁 (𝑛)
𝑎,𝑏

] ≤ |𝑎| + 𝐶

𝑏 − 𝑎

and in particular 𝑁
(∞)
𝑎,𝑏

is finite almost surely. This concludes the proof. □

Here is then the convergence theorem.

Corollary B.12. Let (𝑀𝑛)𝑛≥0 be a martingale. Suppose there is 𝐶 > 0 such that
𝔼[|𝑀𝑛 |] < 𝐶 for all 𝑛 ≥ 0. Then (𝑀𝑛)𝑛≥0 converges almost surely.

Proof. By Corollary B.11, 𝑁 (∞)
𝑎,𝑏

< ∞ on a full measure set Ω𝑎,𝑏, for all 𝑎, 𝑏 ∈ ℚ. Then,
by Lemma B.9, (𝑀𝑛)𝑛≥0 converges on

⋂
𝑎,𝑏∈ℚ

Ω𝑎,𝑏, which also has full measure. Thus

(𝑀𝑛)𝑛≥0 converges almost surely. □
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