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Notes

Introduction

The aim of these notes is to explore basic concepts and examples in geometric group
theory. They are based on several references, the main ones being the books Metric geom-
etry of locally compact groups [5], from Yves Cornulier and Pierre de la Harpe, and Topics
in Groups and Geometry [3] from Tullio Ceccherini-Silberstein and Michele D’Adderio.

Chapter 1 recall several generalities on topological spaces and topological groups.
We explain that a c—compact locally compact topological group can be endowed with
a compatible left-invariant proper metric, that makes it a well-object into the category
of pseudo-metric spaces. Therefore, most of our attention is turned to compactly gener-
ated locally compact groups, in particular to finitely generated groups.

Chapter 2 then focuses on basic properties of pseudo-metric spaces and maps be-
tween them, i.e. coarsely Lipschitz maps and coarse embeddings.

In Chapter 3, we exhibit several examples of such maps, through the fundamental
Milnor-Schwarz lemma. We then introduce a first invariant to distinguish groups up to
quasi-isometry: the volume growth. We compute the growth for several commonly stud-
ied classes of groups, and we wish to emphasize on the idea that the volume growth of a
group has a deep relation with its algebraic structure.

Lastly, we investigate in Chapter 4 the notion of coarse simple connectedness, an-
other invariant of metric coarse equivalence. This allows us to explore the class of com-
pactly presented groups.
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Notes Generalities on topological groups

1. Generalities on topological groups

1.1 Preliminaries from general topology

The goal of this subsection is to recall some terminologies and results from the more
general context of topological spaces.

Definition 1.1. A topological space X is

(i) locally compactif any point x € X has a compact neighborhood.

(ii) o—compactifitis a countable union of compact subspaces.
(iii) first-countable if any point x € X has a countable basis of neighborhoods.
(iv) second-countable if its topology has a countable basis.

(v) separable if it contains a countable dense subset.

If X is a topological space and Y c X, Y is called relatively compact if its closure Y is
compact.

A wide class of topological spaces is that of metric spaces.

Definition 1.2. A pseudo-metriconaset X isamap dx: X X X — [0, o) so that
(i) dx(x,x)=0foranyx € X.
(i) dx(x,y) =dx(y,x)foranyx,y € X.
(iii) dx(x,y) <dx(x,z)+dx(z,y)foranyx,y,z € X.

Above, the second property is called the symmetry of dx, while the third one is the
triangle inequality.

A pseudo-metric space is a pair (X, dx), where X is a set and dx is a pseudo-metric on
X. When no confusion is possible, we only write X for the pair (X, dx).

For apointx € X and A C X, we define the distance from x to A as

dx(x,A) := inf dx(x, a)
acA

and the diameter of A as
diam(A) := sup dx(a,a’).

a,a’eA

We say that A is bounded if its diameter is finite, and we say that A is co-bounded in X if

sup dx(x, A) < oo.
xeX

Equivalently, A is co-bounded in X if there exists C > 0 so that for any x € X, there is
a € Awithdy(x,a) <C.
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Forr > 0and x € X, we denote By, (x, r) the open ball centered at x of radiusr > 0,
given by
By (x,v):={y € X :dx(y,x) <r}.
Similarly;, B;X(x,r) = {y € X : dx(y,x) < r} stands for the closed ball centered at x of
radiusr > 0.

A metric on a set X is a pseudo-metric dx on X so that dx(x,y) = 0 implies x = y.
A metric space is a pair (X, dx) where X is a set and dx is a metric on X. Such a space is
canonically a topological space, for the topology 7,, generated by the collection

{Bay(x,r):x € X,r > 0}

of all open balls of X.

Conversely, given a topological space (X, ), a metric dx is said to be compatible if
T = 14,. Atopological space X is metrisable if it has a compatible metric, and completely
metrisable if it carries a compatible metric for which it is a complete metric space, i.e. it
carries a compatible metric with respect to which any Cauchy sequence in X converges.

Lastly, a topological space is Polish if it is completely metrisable and separable.

Definition 1.3. Let X be a topological space. A pseudo-metric dx on X is

(i) proper if balls with respect to dx are relatively compact.
(ii) locally bounded if any point of X has a neighborhood of finite diameter.

(iii) continuous ifthe map dx: X X X — [0, 00) is continuous.

A metric space (X, dx) is proper ifits subsets of finite diameter are relatively compact.

Note that if dx is locally bounded, then any compact subset of X has finite diameter.
If X islocally compact, the converse holds, i.e. if any compact subset has finite diameter
with respect to a pseudo-metric dx, then dx is locally bounded.

Proposition 1.4. Let X be a locally compact space.
Any proper continuous metric on X is compatible.

Proof. Let thus dx be a proper continuous metric on X. The map Idx: X — (X, 74,) is
bijective and continuous, since dx is continuous. To conclude, it is enough to show that
the image under Idx of any closed set of X is closed in (X, 74, ).

Let F besuchaclosed set, x € X, andlet(x,),en C F besuchthatx, — xin(X, 74,) as
n — oco. We must prove that x € F. Since dx is proper, there exists a compact subset of X
containing x, for alln € N. Up to extracting a subsequence, we may assume that (x; ), en
converges in X to some pointy € X. As Fis closed, y € F. Now (x,),en also converges to
yin (X, 74,), whence y = x. Hence x € F, which s closed in (X, 74). O

The next result, that we will take for granted, characterise second-countable locally
compact spaces.
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Theorem 1.5. Let X be a locally compact space. The following are equivalent.

(i) X issecond-countable.

(ii) X is metrisable and c—compact.
(iii) X is metrisable and separable.
(iv) X is Polish.

(v) X has a proper compatible metric.

Proof. See e.g. [1]. m|

Here is the last concept we need to recall.

Definition 1.6. A topological space is a Baire space if every countable intersection of
dense subsets of X is dense in X.

We conclude with the celebrated Baire’s theorem.

Theorem 1.7. Any complete metric space is a Baire space, and any locally compact topo-
logical space is a Baire space.

1.2 Basic examples and properties

The next definition is one of the most important for the rest of the text.

Definition 1.8. A topological group is a group G endowed with a topology so that the
maps G X G — G, (g, h) —> ghand G — G, g — ¢! are continuous.

Example 1.9. (i) Any group with the discrete topology is a topological group.

(ii) For any n > 1, (R", +) with its usual Euclidean topology is a topological group. Like-
wise, (C", +) with its usual topology is a topological group.

(iii) The multiplicative groups (R, -) and (C*, -) are topological groups, when endowed
with their standard topologies.

(iv) If G is a topological group and H < G, then H is itself a topological group when
endowed with the subspace topology. For instance, (S, ) is a topological group when
endowed with the topology induced by the inclusion S! c C*.

(v) If G and H are topological groups, then so is G X H when equipped with the product
topology.

Beyond these examples, the class of linear groups is an important source of examples
of topological groups. In what follows, for n > 1, we endow M, (R) with the topology
coming from the identification

M,(R) = R"
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where R"” is equipped with its standard topology, induced by the norm || - [[,2.

Equivalently, this is the topology induced by the operator norm || - [|op: M;(R) —
[0, +00), defined as

| gx||R
llgll := sup = lgxllrn = sup [|gx]|re
w20 [X[lRe jxffen <1 lxllgr =1

where || - ||g» denotes the usual Euclidean norm on R”, and gx denotes the multiplication
of the n X n matrix g with the n X 1 matrix x.

The fact that these two topologies coincide follows from the equivalence of the norms
|| - llgs2 and || - [[op, and the equivalence of these two norms is a general fact valid for any
finite dimensional vector space [2].

Proposition 1.10. The general linear group
GL(R) = {g € Mu(R) : det(g) # 0}
is a topological group.

In this statement and in the rest of this text, GL,(R) is endowed with the topology
induced by the inclusion GL,(R) c M, (R).

To prove the previous proposition, we first establish the following fact.

Lemma 1.11. The subspace GL,,(R) is open in M, (R).

Proof. The lemma will be a direct consequence of the next claim:

Let M € M, (R). If |[M]| < 1, then I,, — M is invertible and ||(I,, - M)~ }|| < m

n
Indeed, for any n > 0, define Sy := Z M'. Then, for k > ¢ > 0, one gets
i=0

k

2, M

i=0+1

k

< > Im|

ISk — Sell = '
i=0+1

and this last quantity tends to 0 as k, { — oo since ||[M|| < 1. Hence (S)ken is Cauchy
in M,,(R), which is complete, and thus converges to T € M, (R). A direct computation
shows that

T(I, - M) = (I, - M)T = I,

whence in fact T = (I, — M)~!, and also
1

k k
li M| < 1 M| = ———
kinio; klnio;” | 11— [M]|

and the claim is proved. Now let A € GL,(R). If B € M, (R)is so that ||[B — A|| <
then

ITIl = 1L = M)~ =

1
A=t
1L = A™'Bll = A" (A= B)ll < [A7"[IIA - Bl < 1

9
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whence I,, — (I, — A"'B) = A~'B is invertible, by the claim. It follows that B = A(A~!B)
is invertible as the product of two invertible matrices, i.e. B € GL,(R). Hence GL,(R) is a
neighborhood of any of its elements, which means it is open in M, (R). O

Proof of Proposition 1.10. If ¢ > 0 and A,B € GL,(R) are so that ||B — A|| < ¢, then
A=A -B)|| < ||A7Y|le,and as B~ = (I, — A™}(A - B))'A~!, we get

IB=H < 111 = A7HA = B) 1A

A~
~1-lAT A - Bl
JA~!]
T 1-flAT e

It follows that

1B~ = A7 = IB7H(A - B)A™!||

IB7HII(A - B)A™H|
|A~%e

S 1A e

IA

whence B — B! is continuous at A € GL,(R). Hence GL,(R) is a topological group. O

Likewise, GL,(C) is a topological group.
The next proposition give examples of compact subsets of GL, (R).

Proposition 1.12. For any C > 0, the subset

Qc:={g € GL,(R): |lgll < C,|lg”"| < C}
IS compact.

Proof. Since the topology on GL,(R) is induced by a norm, compactness is equivalent to
sequential compactness, and it is enough to prove that any sequence in Q¢ has a con-
vergent subsequence.

Let thus (gj)jen C Qc be such asequence. Then (g;);en lies in the closed ball of radius

C > 0 and centered at 0 (the zero matrix) in M, (R) = R”Q, and such closed balls are
compact, so (gj)jen has a convergent subsequence (g;, )xen. Calling ¢ € M, (R) the limit
of (gj, )ken, itfollows that [|g]| < C. Now ||g].‘k1|| < Cforanyk € N, sowe can argue as above

to find a subsequence ( g].‘kl)ZEN of ( g].‘kl)keN converging to some i € M;,(R). As || g].‘k1 | <C
1 1
for every! € N, we also deduce ||| < C. Lastly, from the fact that
-1
gjkl gjkl = I?’l

forany! € N, we get gh = I,,s0 ¢ € GL,(R) and h = g~'. Thus (gj)jen has a subsequence
converging to ¢ € Qc, which concludes the proof. O

10
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In particular, it follows from this result that GL,(R) = U Q; is c—compact.
neN

Definition 1.13. A morphism of topological groups is a continuous group homomor-
phism f: G — H, and an isomorphism of topological groups is a bijective morphism
f: G — H of topological groups whose inverse f™': H — G is also a morphism of
topological groups, i.e. is also continuous.

When there is an isomorphism between two topological groups G and H, we say they
are isomorphic, and we denote G = H.

Subgroups of GL, (R) also provide interesting examples of topological groups.
Example 1.14. (i) The special linear group
SLy(R) := {g € GL,(R) : det(g) = 1}

isatopological group for the subspace topology induced by the inclusion SL,,(R) ¢ GL,(R).
Itis a closed and normal in GL, (R), since SL,(R) = det™ ({1}) and since det: GL,(R) —>
R* is continuous.

(ii) The orthogonal group
0,(R) := {g € GLx(R) : ng = ggT = I}

is a topological group. It is compact as a consequence of Proposition 1.12, since for g €
0x(R), gl =1lg7'll = 1.
(iii) The special orthogonal group

SO4(R) := 0,(R) N SL,(R)

is a topological group, compact as it is closed in O, (R) which is compact. For n = 2, the
group SO (R) is isomorphic to the unit circle, through the isomorphism

SO,(R) — S!

(—C(s)frg(eﬁ)) ::)I;Eg))) > cos(0) + i sin(0).

(iv) Let us mention the upper triangular group
T,(R) :={g € GL,(R) : gij = 0if i > j}
and the strict upper triangular group
To(R) := {g € GLy(R) : g;j = 0if i > j, ;i = 1}.

It is easily checked that Ty(R) is normal in T, (R).

11
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Remark 1.15. Let G be a topological group, and ¢ € G. The maps G — G, x — g and
G — G, x — x are continuous, so the map G — G X G, x +— (g, x) is continuous.
Composing with the multiplication, it follows that the map {;,: G — G, {o(x) = gx,
called the left translation by g, is continuous. It is also a bijection, whose inverse {,-1
is also continuous. Thus /; is a homeomorphism. Likewise, the right translation by g
re: G — G, rg(x) = xg, is a homeomorphism. Thus G is a homogeneous space, i.e.
given any a,b € G, there is a homeomorphism G — G sending a to b. This means that
topologically, G "looks the same" at all points.

Let G be a topological group, A, B C G, and g € G. Then we denote Ag := {ag : a €
A}, gA:={ga:aec A},A" :={a"':a e A}and

AB:={ab:ae€ A,be B} = UaB:UAb.
aeA beB

Asubset A C G is called symmetricif A~! = A.
The following observations are straightforward from the definitions.

Lemma 1.16. Let G be a topological group, A,B C G, g € G.

(i) IfA isopen (resp. closed), then gA, Ag are open (resp. closed).
(ii) IfA isopen, then AB, BA are open.
(iii) IfA isclosed and B is finite, then AB, BA are closed.

Proof. (i) Suppose A is open. Then gA = {,(A), Ag = r¢(A) are open since g, r, are
homeomorphisms (so in particular, these two maps are open).

(ii) If A is open, then Ab is open for any b € B by (i), so AB is open as a union of open sets.
Likewise, bA is open for any b € B, whence BA is open as well.

(iii) If now A is closed, then Ab, bA are closed for any b € B, and thus AB, BA are closed
as finite unions of closed sets. O

If G is a topological group, and H < G, G/H is a topological space, with U ¢ G/H
open if and only if g7}(U) c G open, where q: G — G/H is the natural surjection. This
map is always open, because if S C G is open, then g~ 1(g(S)) = SH is the union of all left
H-cosets meeting S. Lemma 1.16 ensures that SH is open since S open, so 4(S) is open
in G/H, as claimed. If in addition H < G, then G/H is a topological group, with the usual
universal property: if f: G — L is a morphism of topological groups with H < Ker(f),
there exists aunique morphism f*: G/H — L of topological groups so that f*og = f.In
particular, amorphism of topological groups f : G — L always induces anisomorphism
of topological groups

G/Ker(f) = Im(f).

Example 1.17. (i) Themap f: R — S', t — 2™ is a surjective morphism of topologi-
cal groups, with Ker(f) = Z. Hence R/Z = S! as topological groups.

12
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(ii) The morphism f: C* — R, z — |z| induces an isomorphism C*/S! = R.,.
(iii) The map det: GL,(R) — R™ is a surjective morphism of topological groups with
kernel SL,(R). Thus GL,(R)/SL,(R) = R".
Proposition 1.18. Let G be a topological, and let ¥ be a basis of open neighborhoods of
e € G. The following properties hold.
() Ifu,V € F, then thereexists W € ¥ withW cUNV.
(ii) Ifa e U € F, then thereexistsV € ¥ withVa c U.
(iii) IfU € F, then there existsV € ¥ withV~'V c U.

(iv) IfU € F andx € G, then there existsV € ¥ withx~'Vx c U.

Proof. (i) LetU,V € ¥.Then U NV is an open neighborhood of ¢, so there is W € ¥ so
thatWcunbV.

(i) IfU € ¥ and a € U, then Ua~! is an open neighborhood of e € G, so thereisV € F
with V c Ua™!, equivalently Va c U.

(iii) LetU € ¥, and considerthemap f: GXG — G, (a,b) — a~'b. As G is a topological
group, f is continuous, and as (e, e) € f~(U), there exist two open subsets A, B ¢ G both
containing e and so that A x B ¢ f~!(U). Hence A N B is an open neighborhood of e, so
thereisV € # withV ¢ An B c f~1(U), whence V-V c U.

(iv) Letnow U € ¥ and x € G. Consider the map f: G — G, ¢ —> x1gx. As above,
f is continuous, so f~}(U) is open, and contains e € G. Hence there is V € ¥ with
vV c f-iU), ie. x'Vx c U. O

Definition 1.19. Let X be a topological space.

(i) The space X is a Ty—space if for any x, y € X, x # y, there is a neighborhood of x not
containing y.

(ii) The space X is a To—space (or Hausdorff) if for any x, y € X, x # y, there exist neigh-
borhoods of x and y that are disjoint.

Remark 1.20. (i) Clearly, if X is Hausdorff, then X is Tj.
(ii) Aspace X is T} if and only if {x} is closed for all x € X.

The next result is standard in general topology. We include the proof for complete-
ness.

Proposition 1.21. Let X be a topological space. The following are equivalent.
(i) The space X is Hausdorff.
(ii) Thediagonal Ax := {(x,x) e X X X : x € X} isclosedin X x X.
(iii) For any topological spaceY and any continuous functions f, g: Y — X, the set

Z:={yeY: f(y)=gy)}

isclosediny.

13
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Proof. (i) = (iii) : Let Y be a topological space and f, g: Y — X be continuous maps.
Lety € Y\ Z. Thus f(y) # g(y), and since X is Hausdorff, we find U, V C X open so that
f(y) € U, g(y) € Vand U NV = 0. It follows that f~(U), g~}(V) are open in Y since f
and g are continuous, and they both contain y, so f~'(U) N ¢7!(V) is also open in X and
also contains y. It remains to notice that f~1(U) N ¢71(V) c Y \ Z to conclude that Y \ Z
is a neighborhood of any of its elements, i.e. is open in Y, and thus Z is closed.

(iii) = (ii) : Itis enough to apply (iii) with Y = X x X and f, g the projections on the first
and second factor respectively (which are both continuous) to conclude that the diago-
nal is closed in X x X.

(i) = () : Letx,y € X, x # y. Then (x, y) € (X X X) \ Ax, which is open by assumption,
so we can find two opensubsets U, V ¢ X with (x,y) e UXV c (XxX)\Ax. Thusx € U,
y € V, and the intersection U NV is empty since a point z € U NV would provide a point
(z, z) of the product U x V and of the diagonal Ax, contradicting the fact that these two
sets are disjoint. Hence X is Hausdorff. O

This proposition allows us to deduce the next one for topological groups.

Proposition 1.22. Let G be a topological group, and let ¥ be a basis of neighborhoods of
e € G. The following are equivalent.

(i) Thegroup G is Hausdorff.
(ii) ThediagonalAc ={(g,h) € GXG:g=h}isclosedinG x G.
(iii) For any topological group H and any morphisms f,g: H — G, the subset
Zig={heH: f(h)=g(h)}
is a closed subgroup of H.

(iv) For any topological group H and any morphism f: H — G, Ker(f) is a closed sub-
group of H.

(v) The subgroup{e} is closed in G.
(vi) Thegroup G isT;.

(vii) ﬂ F = {e}.

(viii) The intersection of all neighborhoods of e is{e}.

Proof. The implications (i) = (ii) = (iii) follows from Proposition 1.21, and addition-
ally in (iii) the subset Z¢ , is easily checked to be a subgroup.

(iii) = (iv) : Fixa morphism f: H — G and define g: H — G, h +—— e. The map g is
amorphism of topological groups, and in this case the set Z¢ , is nothing but the kernel
of f, so from (iii) we deduce that Ker(f) is closed in H.

(iv) = (v) : Apply (iv) with H = G and f = Id; to deduce that Ker(f) = {e} is closed in G.

14
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(v) = (vi) : To prove G is Tj, it is enough to prove that {g} is closed for any ¢ € G, by
Remark 1.20. Forany ¢ € G, {¢} = g{e} = {;({e}) and the closedness of {¢} implies that
{g}is also closed, since ¢, is a homeomorphism.

(vi) = (vii) : The inclusion of {e} in ﬂ F is obvious. Conversely, if ¢ € G, ¢ # ¢, then

FeF
G\ {g} is open by (vi) and contains e. Hence there exists F € ¥ so thate € F c G\ {g},

whence g ¢ ﬂ F. This proves the desired equality.

FeF
(vii) = (viii) is obvious.
(viii) => (i) : Let g, h € G, ¢ # h. Then gh™! # ¢, so by (viii) there exists a neighborhood
U of e so that ¢h™! € G \ U, and without restriction we may assume that U € ¥. Thus,
Proposition 1.18(iii) ensures that there exists V € ¥ so that V-V c U. In particular,
Vgh™!is aneighborhood of ¢h™!, and as V-1V c U, it follows that

Vegh™nv =0.

Equivalently, Vg N Vh = 0, whence V ¢ and V' are disjoint neighborhoods of ¢ and h
respectively. It follows that G is Hausdorff. O

These equivalent characterisations of the Hausdorff property allow us to prove much
more easily stability properties among the class of topological groups.

Proposition 1.23. Let G be a topological group, and H < G.

() IfG is Hausdorff, then H is Hausdorff.
(ii) Thequotient G/H is Hausdorffif and only ifH is closed in G.
(iii) IfH, G/H are Hausdorff, then G is Hausdorff.

Proof. (i) is already true in the more general context of topological spaces.

(ii) Suppose first that G/H is Hausdorff, and denote g: G — G/H the canonical pro-
jection. In particular, G/H is Tj, so the singleton {g(e)} is closed in G/H. Thus H =
g7 ({g(e)}) is closed in G as q is continuous.

Conversely, suppose H is closed in G, and let aH, bH be two disctinct elements of
G/H. As g is open and continuous, it is enough to find W a neighborhood of e in G
so that WaH N WbH = (. Since a~'bH is closed (as the left translation by a~'b is a
homeomorphism) and does not contain e, so we find a neighborhood U of e in G so that
UnNa 'bH = 0. Now, Proposition 1.18(iii), (iv) shows we can find neighborhoods V, W of
esothat V-V c U,a 'Wa c V. Now WaH N WbH = 0.

(iii) As H is Hausdorff, {e} is closed in H by Proposition 1.22. As G/H is Hausdorff, H is
closed in G by (ii). Thus {e} is closed in G, whence G is Hausdorff, again by Proposition
1.22. i

Conversely, open subgroups of topological groups provide quotient spaces far from
being Hausdorff.

15
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Proposition 1.24. Let G be a topological group, and H < G.

(i) IfH isopen, then H is closed. Conversely, if H is closed and has finite index, then H
is open.

(ii) IfH contains a neighborhood of e, then H is open.
(iii) The quotient G/H is discrete if and only if H is open in G.

Proof. (i) If H is open, then so are all left H—cosets in G, whence

G\H=|JgH
g¢H
isopenin G. Thus H is closed in G.

Conversely, if H is closed and has finite index, then G \ H is the union of finitely many
left H—cosets, thus G \ H is also closed in G. Therefore, H is open in G.

(ii) If H contains a neighborhood of ¢, then H contains U an open neighborhood of e,
and thus H = HU is open by Lemma 1.16(ii).

(iii) If G/H is discrete, then {g(e)} is open, so H = g7*({g(e)}) is open in G as the natural
surjection g: G — G/H is continuous.

Conversely, any singleton in G/H is the image under g of a left H—coset. Such a left
cosetis open in G, thus any singleton in G/H is open as g is an open map. O

For the next statement, recall that a topological space X is connected if it is non-
empty and cannot be decomposed as the disjoint union of two non-empty open subsets.
Equivalently, X is connected if the only subsets of X that are both open and closed are (
and X itself.

Example 1.25. (i) A discrete group is connected ifand onlyifitis reduced to one element.
(ii) Foranyn > 1, (R", +), (C", +) are connected.

(iii) The multiplicative groups (R, -), (C*, -), (S!, -) are connected.

(iv) For any n > 1, the general linear group GL,(R) is not connected, since the deter-

minant is continuous and that R* is not connected. The same reason and the fact that
{-1, 1} is not connected shows that O,,(R) is not connected either.

Corollary 1.26. (i) A connected topological group has no proper open subgroups.

(ii) A connected topological group is generated by any neighborhood of the identity.

Proof. (i) If G is connected, and H is a proper open subgroup, then H is also closed (by
Proposition 1.24(i)), a contradiction with the connectedness of G.

(ii) If U is such a neighborhood, let H := (U). From point (ii) of the previous proposition,
H is open, hence closed, and thus H = G by connectedness of G. O

We finish this subsection with the following stability property for connected topolog-
ical groups.
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Proposition 1.27. Let G be a topological group and let H < G.

(i) IfG is connected, then G/H is connected.

(i) IfH, G/H are connected, then G is connected.

Proof. (i) is already true for topological spaces.

(ii) For a contradiction, assume that G = A LI B where A, B are non-empty open subsets
of G. Since H is connected, so are all its left cosets. Hence each coset must be contained
eitherin A orin B, so A and B are union of left H—cosets. If g: G — G/H is the quotient
map, then

G/H = q(A)uq(B)
and A, B are both open and closed in G, so q(A) and g(B) are both open and closed in
G/H. It follows that G/H is disconnected, a contradiction. Hence G is connected. O

Forn > 1,let S"! = {x € R" : ||x||[g» = 1} be the unit sphere in R". The general linear
group GL,(R) acts naturally on R", and thus so does SO, (R). This action preserves S~
(as any orthogonal matrix acts by isometries on R"), so restricts to an action SO, (R) ~
snl,

Proposition 1.28. Foranyn > 2,S0,(R) ~ S"! is transitive.

Proof. We prove the statement by inductiononn > 2. If n = 2, SO2(R) is the group of
rotations of the plane, that acts transitively on the unit circle S L

Now suppose the statement holds up to n — 1. To prove that SO, (R) ~ S"~! is transi-
tive, it is enough to prove that for any x € 5"~!, there exists k € SO, (R) so that x = ke,
wheree, = (0,...,0,1). Fixsuch a point x € S"~!. Then we can write

x = cos(0)e,, + sin(6)x’

with x” is in the subspace spanned byey, .. ., e,-1, the n — 1 first vectors of the canonical
basis, and has ||x’||g.—1 = 1. In other words, x € 5”72, By the induction hypothesis, there
exists k’ € SO, _1(R) with x” = k’e,,_1. Set then

k/ O In_2 0 O
u:= (0 1) , hg = 0  cos(B) sin(0)|.
0 —sin(@) cos(0)
Then it follows that
uhge, = sin(0)k’e,;,—1 + cos(0)e, = cos(0)e, + sin(0)x" = x
and we choose k := uhg. This concludes the inductive step and the proof. O

If we denote K := Stab(e,) = {k € SO,(R) : ke, = e,} the stabilizer of e, € S"!, we
have that

K= { (’B (1)) K € SOn_l(R)} = SO,_1(R)

and we deduce the following corollary.
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Corollary 1.29. (i) Any k € SO, (R) can be written k = kihgky withk;, ks € K = SO,-1(R)
and 0 € R.

(ii) For anyn > 2,S0,(R) is connected.

Proof. (i) Letk € SO,(R), and let x = ke,,. According to the proof of the previous proposi-
tion, we may write x = k’hg, with k’ € K. Thus hi;'k ke, = e,, whence ky := hy'k;'k € K,
and k = kll’lekg.

(ii) We prove the statement by induction on n > 2. For n = 2, SO»(R) is isomorphic to the
unit circle, hence is connected.

Now assume that SO, _1(R) is connected for some n > 2. From (i), there is a continu-
ous surjection

50,-1(R) X R X SO,-1(R) — SO, (R), (k1,0, k2) +—> kihgks.

Since SO, -1(R) xR x SO,_1(R) is connected, it follows that SO, (R) is connected, and the
proofis complete. O

In fact, the same proof shows that SO, (R) is path-connected for any n > 2, in partic-
ular connected.

Recall that any ¢ € GL,(R) has a unique polar decomposition, i.e. a decomposition
g = kp with k € 0,(R), p € P(R"), where P(R") denote the subset of positive definite
symmetric n X n matrices. Itis an open convex cone in the vectorspace of real symmetric
n X n matrices. Moreover, the map

0,(R) x P(R") — GL,(R), (k,p) — kp

is a homeomorphism. More details on this result can be found in [8, theorem 1.4.1] for
the finite-dimensional case over the field of real numbers, and in [7, theorem 1.46] for
the general case over the field of complex numbers.

Denoting GL; (R) := {g € GL,(R) : det(g) > 0}, it follows that any ¢ € GL;(R) can be
uniquely written as ¢ = kp where k € SO,(R) and p € £(R"), and that the map

SO, (R) x P(R") — GL:(R), (k,p) — kp

is a homeomorphism. As SO,(R) and #(R") are both connected, we deduce the next
result.

Corollary 1.30. Foranyn > 1, the topological groups GL; (R) and SL,(R) are connected.

1.3 Metrisation theorems for topological groups

This section is devoted to establish several metrisation theorems for topological groups.
From now on, any topological space is assumed to be Hausdorff, unless mentioned oth-
erwise.

The starting point is the following lemma.

18
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Lemma 1.31. Let G be a topological group. Assume there exists a sequence (K, ),cz of sub-
sets of G so that

() G = UKn.

nez

(ii) Foranyn € Z, K,, is symmetricande € K,,.
(iii) K,K,K;, C K41 foranyn € Z.
(iv) Thereexistsm € Z so that K3, # 0.

Defineamapd: G X G — [0, +0) by

(g, h) := inf{t >0:3ny,...,nx €Z, Jwy € Ky, ..., wi € Ky,
sothatg‘lh:wl...wk,t:2”1+~--+2”k}

and write|g| = d(e, ). Then the following claims hold.

(i) Themapd is a left-invariant pseudo-metric on G for which every compact subset of
G has finite diameter.

(i) IfK, is a neighborhood of e for anyn € Z, thend is continuous.
(iii) Foranyn € Z, if|g| < 2" then g € K,,.

(iv) One has ﬂ K, ={g € G :|g| = 0}. In particular, ifﬂ K, = {e}, thend is a metric.

nez nez

Proof. (i) Firstletg € G.Theng¢™'¢ = e € K, foranyn € Z, henced(g, g) < 2" foranyn €
Z. This implies d(g, ¢) = 0. For the symmetry, note thatif ¢, h € Gandif g™'h = wy ... wy
forsomew; € K,,, ..., wi € K,,, then

hlg=(¢g7th)™t = w,;,} Wy
and w;} € Ky, foranyi =1,...,k, as any K, is symmetric. Thus
d(h,g) <2™" +...+ 2%

and it follows that d(h, g) < d(g, h). The reverse inequality follows swapping the roles of
g and h,whenced(h, g) = d(g, h)forall g, h € G, and d is symmetric. Lastly,ifg, h,a € G,
the triangle inequality for g, /1, a follows from the fact that if

g_la:wl...wk, ath=v,...0,

forsomeny, ..., ng,my,..., m, € Zandsome group elementsw; € K, ..., wx € Ky, ,v1 €
Ky, .. .0y € Ky, then

g_lh = (g_la)(a"lh) =W1y...Wk0U]...0y
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exhibits g‘lh as a product of k + r group elements, so we deduce that
d(g,h) <2M 4. 2™ 4 2M ... 4 O

and thus thatd(g, h) < d(g,a) + d(a, h). Therefore d is a pseudo-metric on G.

Itsleft-invarianceisalsoclear: ifa, g, h € Gandg‘lh =vp...vxwithv; € Ky, ..., 0 €
K,,, then
(ag) Mah)=g ' h=vy...0¢

aswell, sod(ag,ah) =d(g, h).

Now let L ¢ G be compact. Since K;, has non-empty interior, K, is a neighborhood
ofe,and L C Jy ¢K; . By compactness, it follows that L is covered by finitely many
translates of K, 41, say

LctiKyuU---U ngm+1- (1)
Now, forany 1 < i,j < p, £7'¢; € K,,(; j) for some n(i, j) € Z. Set N :=  max n(i,j), so that
<i,]<p
fl.‘lfj € Ky foranypairl <i,j < p.Let{,{ € L. From (1), there existi,j € {1,...,p} with
{ € liKy+1, U € {jKyy41, SO we may write { = {;z, I’ = {;z’ for some z,z’ € K,;;+1, and it
follows that
=z

Hence d(¢, ¢’) < 2m*1 4 oN 4 gm+l — 9N 4 9m+2 and this estimate is uniform over ¢, ¢’ € L.
Therefore L has finite diameter with respect to d.

(ii) Let g,h € Gand ¢ > 0. Letn > 0 be so that2™ < 5. As K_, is a neighborhood of e,
(g, h) (K-, x K_,) is a neighborhood of (g, h) € G X G, and for (x, y) € (g, h)(K-, X K_y),
we havex € ¢gK_,,, y € hK_,,, g € xK_,,, H € yK_,,. Then, by the triangle inequality and
the left-invariance of 4, one has

dix,y) <d(x,g)+d(g, h)+dh,y)
=d(e,x'g)+d(g,h)+d(e,h"'y)
<27"+d(g, h)+27"
<d(g,h)+e¢

and similarly d(g, h) < d(x, y) + ¢. Hence |d(x, y) — d(g, h)| < €, and thus d is continuous
at(g,h) e GxG.

(iv) Clearly, if ¢ € Ghas |g| = 0, then g € K, forany n € Z by (iii). Conversely, if ¢ € K,, for
any n € Z, it directly follows from the definition of d that |g| = d(e, ) < 2" foranyn € Z.
Letting n — —oo shows that |g| = 0, as claimed.

In particular, ifﬂ K, = {e}and thatd(g, h) = 0forsome g, h € G, thend(e, g™ h) = 0
nez
by left-invariance, so ¢g~'h = e, and thus ¢ = h. Therefore d is a metric.

(iii) Explicitly, we must show that the following: letw € G,n € Z, k > 0,ny,...,nx € Z,
v1 € Kyy, ..., 0 € Ky, with

w=01...0, 2M .. 2 < 21,
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Thenw € K,,.

If k = 0, then w = e and we are done. If k = 1, then 2™ < 2" implies n; < n, i.e. n; <
n—-1,sow =v; € K,, € K,—; € K,;,and we are done. If k = 2, then 2" + 2"2 < 2" implies
ni,ny < n,ieny,ng <n-1sow =0ovvs € K, Ky, € K,—1K,—1 C Ky, so we are done in
this case as well. We continue by induction on k > 3, assuming the claim is proved up to
k — 1. Hence suppose w can be written w = v; ... v, withv; € K, ... v € K,,, and that

oM 4L 2k < O, (2)

We now show the following claim:

Claim. There exists anindex j € {1, ..., k} so thatw = wyv;ws withnoww; = v;...vj-4,
Wy = Vjt1 ... Uk satisfying
[wi, |wa| < 271

First of all, if there exists j € {1, ..., k} withn; = n — 1, this index j is necessarily unique
by the condition (2), so we can write w = w1v;w>, and

QML o QM L QML L QM = QM Ly Mk 9 < gt gl — gl

using (2). A fortiori, 2" + -+ + 2"~ < 2*~Land 2"+ + ... + 2" < 2771 g0 that |wq|, |ws| <
2"-1 and the claim is proved in this case.

Otherwise, n; < n—2forallj € {1,..., k}, and we denote { the largest indexi € {1,..., k}
for which 2"t + - .- + 2% < 2"~L If¢ = k, itis enough to take j = 2. Otherwise, if { < k, we
setj := { + 1, so thatw = wyv;w; as above. On the one hand, |w| < 2" + ... + 2"~ =
2M ... 4+ 2" < 2"~1 by definition of £. On the other hand, we have

|wa| < 2" 40 4 2M = 252 oL 4 DMK

and the latter is strictly less than 2"~ since the first part of the sum is 21 +- - - +2"+1 > 211~1
by definition of ¢ and the total sum

QM o ML QM2 L g O
is strictly less than 2" by assumption. This conludes the proof of the claim in this case.

Now, applying the induction hypothesis to w;, w2 in the claim shows that w, w, €
K,,_1, whence

This completes the inductive step, and also our proof of (iii). O
Our first metrisation criterion is usually referred to as the Birkhoff-Kakutani theorem.

Theorem 1.32. Let G be a topological group. The following claims are equivalent.

(i) Thegroup G is first-countable.
(ii) Thegroup G is metrisable.
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(iii) There exists a left-invariant compatible metric on G.

Proof. To start, the implications (iii) = (ii) = (i) are obvious. Hence we must only
prove that (i) = (iii).

Assume that G is first-countable, and denote (V},),,>1 a countable basis of neighbor-
hoods of e. Forn > 0, let K,, := G. For n > 1, choose inductively a symmetric neighbor-
hood K_, ofe so that K_,, ¢ V,; and K_,K_,K_,, € K_,+1. By construction, the sequence
(Ky)nez satisfies the assumptions of Lemma 1.31, and we denote d the pseudo-metric
provided by this lemma. First of all note that

ﬂKn:ﬂK_ncﬂVn:{e}

nez n>1 n>1

where the last equality follows from Proposition 1.22, that applies since G is Hausdorff.
Thus, by Lemma 1.31(iv), d is a metric on G, which is furthermore left-invariant by (i) of
the same lemma. Lastly, by point (iii) of Lemma 1.31, for any n € Z, the open ball with
respect to d centered at e € G of radius 2" is contained in K,;, and conversely from the
definition of d, K, is contained in the open ball with respect to d of radius 2" centered at
e € G. This shows that the topology induced by d coincides with that of G, and thus that
d is a left-invariant compatible metric on G. O

We can actually strengthen the conclusion if G is moreover locally compact.

Theorem 1.33. Let G be a locally compact group. The following claims are equivalent.

(i) Thegroup G is second-countable.
(ii) Thegroup G is o—compact and first-countable.

(iii) There exists a left-invariant proper compatible metric on G.

Proof. By Theorem 1.5, implications (iii) = (i) = (ii) are straightforward.

Assume now that (ii) holds, and let (L, ),>0 be a sequence of symmetric compact sub-
sets of G containing e so that
G={JL.

n=0
Let also (V;,),>0 be a countable basis of neighborhoods of e, with V relatively compact.
Define K := Lo U Vy and K,,41 := K, KK, U L4 for anyn > 0. Forn > 1, choose induc-
tively a symmetric neighborhood K_,, of e so that K_,K_,K_, ¢ K_,41, as the previous
proof. By construction, the sequence (K, ),cz satisfies all assumptions in Lemma 1.31,
so the pseudo-metric d provided by this result is once again a left-invariant continuous
compatible metric on G, which is additionally proper thanks to Lemma 1.31. O

Theorem 1.34. Let G be a o—compact locally compact group.

For any sequence (U,),>1 of neighborhoods of e in G, there exists a normal compact
subgroup K of G contained in ﬂ U, so that G/K is metrisable.

n=>1
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Proof. As G is o—compact, we find a sequence (L, ),>o of compact subsets of G so that
ee€l, CcLyy foranyn > 0and
G={JL.

n>0

Forn > 0,let K, := G and for n > 1, we define inductively a symmetric compact neigh-
borhood K_,, of e as follows. Suppose that Ky, . .., K_, have been defined. The map

L, XxG—G
(A, k) — AkA™!

is continuous and identically equal to e on L,, X {e}. Thus, forany A € L, there is an open
neighborhood V of A and a compact neighborhood W), of e so that ¢k¢~! € K_, for all
t e Vyand k € Wy. Then L, C |U,¢1, Va, whence by compactness

j
Loc | Jwy
i=1

j
for some finitely many V,,, ..., V. SetK_y_; := ﬂ Wy,

i=1
By construction, ¢k¢f~' € K_, forall¢ € L, and k € K_,_;. Up to replacing K_,_; by
a smaller symmetric compact neighborhood of e, we can assume that K_,,_; c U, and
K—n—lK—n—lK—n—l c K—n-

Let now K := m K_,. Then K is a closed subgroup of G contained in (,,»; U,. Let
n>1
g € G. There exists np > 1 so that g € L, for any n > ng. Thus, for n > ng, one gets
gK_ 17V c K., c Koy,

and thus gKg~! c K_,. It follows that gKg™! < 5, K-» = K, and thus K is normal.
Applying now Lemma 1.31, we find a left-invariant proper continuous pseudo-metric d
on G with the property that d(e, g) = 0 if and only if ¢ € K. This induces a left-invariant
proper compatible metric on G/K. O

1.4 Compactly generated groups

Definition 1.35. Let G be a group. A generating set S for G is a subset S C G so that, for
any ¢ € G, there existn > 0and sy, ...,s, € SU S~ so that

g:SI...Sn.

A topological group G is compactly generated if it has a compact generating set S. In that
case, we write G = (S).
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Equivalently, a group G is generated by S if
G={]Js"
n>0
where S := SUS™ 1 U {e}.
Example 1.36. (i) Compact groups, such as s1,0,(R), SO, (R), are compactly generated.

(ii) If G is connected and locally compact, then G is compactly generated, as a conse-
quence of Corollary 1.26. For instance, SL, (R) is compactly generated for any n > 1.

(iii) A locally compact group always has compactly generated open subgroups.

(iii) A discrete group is compactly generated if and only if it is finitely generated, i.e. it
has a finite generating set. We will see plenty of examples below.

Here is a structural result on compactly generated groups.
Proposition 1.37. Let G = (S) be a locally compact compactly generated group.
(i) Forn large enough, S isa neighborhood of e € G.
(ii) For any compact subsetK C G, thereisk > 0 so that K is contained in the interior of
—k
S.
—k
(iii) For every other compact generating setT of G, there existk,{ € N so thatT c S and
—t
ScT.

Proof. (i) As S generates G, we have

and as G is a Baire group (since it is locally compact), there exists m € N so that 5" has
. . . . _n . .
non-empty interior. Then the interior of S is an open neighborhood of e for anyn > 2m.

—Itx N o o . —rx 2
(ii) Let x € K. There exists n, € Nwith x € Sn , thus x is in the interior of Sn ’ m, where
m € Nisasin (i). It follows that
—k o
Kel J@©)

k>0
and as K is compact, the conclusion follows.
(iii) follows from (ii) applied to K = T firstand K = S then. ]

Definition 1.38. Let G be a topological group. A subgroup H < G is cocompact if there
exists a compact subset K of G so that G = KH.

In the sequel, we will also make use of the following technical lemma.

Lemma 1.39. Let G be a locally compact topological group, H a closed subgroup, and
ni: G — G/H the canonical projection.

Then every compact subset of G /H is the image under 1t of a compact subset of G.
Proof. See for instance [5, lemma 2.C.9]. O
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Notes 1.5 Finitely generated groups
1.5 Finitely generated groups

Among topological groups, the class of discrete groups play a prominent role, and
brings numerous examples whose behaviours are already delicate to analyse. The goal
of this subsection is to introduce several classes of groups of interest. They will constitute
some of our running examples that will follow us for the rest of this text.

We are in particular concerned by finitely generated groups, i.e. groups that have a
finite generating set.

Example 1.40. (i) Finite groups are finitely generated.

(ii) The group (Z, +) is finitely generated, and S = {—1, 1} is a finite generating set. More
generally, if p, g € Z are coprime, then {+p, 4} is a symmetric generating set for Z.

(iii) In fact, for any d > 1, the group Z¢ is finitely generated, and a symmetric generating
set is given by the "canonical" basis

{£(1,0,...,0),£(0,1,0,...,0),...,%(0,0,...,0,1)}.

(iv) Ifd > 1, the non-abelian free group F; of rank d is finitely generated, a generating set
being given by the equivalence classes of words of length one over a set S of cardinality

(v) It is not hard to check that the Heisenberg group

1 a c
H(Z)::{ 0 1 0b :a,b,ceZ}
0 0 1
is generated by the three matrices
110 1 00 1 01
x=({0 1 0|, y=|0 1 1],z=|0 1 O
0 01 001 0 01

(vi) The group (Q, +) is not finitely generated. Indeed, suppose for a contradiction that Q
is generated by finitely many rationals ’% ey Z—:. Any finite sum of these fractions or their
inverses is a rational number with denominator at most gq; ... g,. Letting N := g1... ¢y,

it follows that ﬁ cannot be written using %, ..., I or their inverses, a contradiction.

Vi In
(vii) The group SLy(Z) of determinant one 2 X 2 matrices with integer entries is finitely

generated, for instance by
_(1 1) ,_r 0
“Zlo 1)

or even by two matrices of finite order (see e.g. [4, corollary 2.6]).

(viii) The group Do, := (a,t : a> = 1,ata™' = t7') is called the infinite dihedral group, and
generalizes finite dihedral groups allowing a rotation of infinite order. In fact, this group
is isomorphic to

(a,b . a2 = b2 = 1> :ZQ*ZQ

the free product of two cyclic groups of order 2.
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Note that a finitely generated group is always countable, but the converse does not
hold, as shown by Example 1.40(vi).

The following proposition shows that being finitely generated in stable under group
extensions.

Proposition 1.41. Let G be a group and N < G.

If G is finitely generated, then G/N is finitely generated. Conversely, if N,G/N are
finitely generated, then G is finitely generated.

In fact, similar statements are true for general topological groups. We treat here the
discrete case for keeping the exposition relatively short, and we refer to [5, proposition
2.C.5] for the general case.

Proof. 1f G is finitely generated and m: G — G/N is the natural surjection, then the
image under 7t of a generating set for G is a generating set for G/N.

Conversely, let {g1, ..., gn} be a generating set for N and {hN, ..., h, N} a generat-
ing set for G/N. Fix ¢ € G. Then there exists €1, ..., ¢, € {—1, 1} so that

gN = (N) .. (hyN)" = (B By )N

and it follows that g(h;* ... h,")~* € N. We can then write

gyt ) =g
forsome 64,...,0, € {-1,1},and thus g = gfl e gS”hil ... h;". This proves that
{81,---, & M1,..., i}
is a finite generating set for G, and the proof is complete. m]

On the other hand, itis in general not true that subgroups of finitely generated groups
are themselves finitely generated. To produce such an example, we introduce an addi-
tional group construction.

Definition 1.42. Let A, B be two groups. Their wreath product A ¢ B is the group defined

(@A)xB

B
where B acts on the direct sum by precomposition, i.e.

(b)) = f(b~'D")
foranyb,b’ € Bandany f € 5, A.

26



Notes 1.5 Finitely generated groups

Hence, elements of A B are pairs (f, b) where f is a finitely supported function on B
(i.e. f(b) = ex for all but finitely many b € B) and b € B. The multiplication law is given
by

(f,b)(f',b)=(f+b-f',bD")

forall f,f" € EB s A, b,b’ € B, where "+" stands for the composition law in the direct
sum.

We then prove that this construction preserves finite generation.

Proposition 1.43. IfA, B are finitely generated, then A B is finitely generated.

Proof. Let Sy = {ai,...,a,} be a generating set for A, and let S = {by,...,b,,} be a
generating set for B. Foranya € A,leto, € EBB Abedefined by 6,(eg) = aand 6,(b) = ex
forany b # ep. Let also 1 denote the neutral element of the direct sum, defined as 1(b) =
ea for any b € B. We claim that the finite set

{(8a;,e8),(1,bj): 1<i<n,1<j<m}

is a generating set for A ¢ B.

First, as the multiplication in A B is the multiplication of B in the second component,
and as Sp generates B, it is enough to prove that any pair of the form (f, eg) is a product
of (04,,€B),...,(04,,€p). Since f is finitely supported, it is enough to prove that any pair
of the form (6,, ep), a € A, is aproduct of (0,,, ), ..., (04,, €p). Fora € A, write

a=aj...a,
forsomeiy,..., iy € {1,...,n}, and then it follows that

(0a,€8) = (04, , €B) - - - (0a;, , €B)-
Thus A ¢ B is finitely generated. O

From this result, it follows that Z/2Z Z is finitely generated, but it contains (P, Z/2Z
as a subgroup, and the latter is not finitely generated.

However, there is a class of finitely generated groups having all their subgroups finitely
generated.

Definition 1.44. A group G is called polycyclic if it has a sequence of subgroups
Hy={ec} <H; <---<Hs-1<Hs=G
so that H; < H;;; and the quotient group H;;1/H; is cyclic, foranyi =0,...,s — 1.
In particular, since cyclic groups are abelian, any polycyclic group is solvable.

Proposition 1.45. Let G be a polycyclic group.
Then any subgroup of G is finitely generated.
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Proof. Let
Hy={eg} <H;  <:---<Hs-1<H; =G

be a sequence as in Definition 1.44. Observe that H; is polycyclic as well, for any i =
0,...,s. Letnow H be a subgroup of G. We show that H is finitely generated by induction
ons. If s = 0 there is nothing to prove. Assume that the statement is proved for any
group with a sequence of subgroups as above of length at most s — 1. Thus the subgroup
H N Hs;_y < H,_; is finitely generated. Also G/H;_1 = Hs/H;_; is either cyclic finite or
isomorphic to Z, and in both cases this quotient has all its subgroups finitely generated.
Thus, from
H/(H N Hs—l) = HHs—l/Hs—l < G/Hs—l

we deduce that H/(H N H,_) is finitely generated. Hence H is finitely generated as a
consequence of Proposition 1.41. O

Example 1.46. As we proved above that Z, ¢ Z has a subgroup which is not finitely gen-
erated, it follows that Z» ! Z is not polycyclic. As it is nonetheless solvable, this shows that
the class of polycyclic groups is strictly contained into the class of solvable groups.

As the class of solvable groups, polycyclic groups enjoy various stability properties
with respect to basic group theoretic constructions.
Proposition 1.47. Let G be a polycyclic group.

Then its subgroups, quotients, homomorphic images, or extensions by polycyclic groups,
are polycyclic groups.

Proof. We show the statement for homomorphic images, and the other ones are very
similar. Assume G is polycyclic and let f: G — H be a surjective group morphism.
Taking a sequence

H0={€G}<H1<"'<Hs—1<Hs:G

of subgroups of G as in Definition 1.44 and pushing it through f provides a sequence
f(Ho) ={en} < f(Hi) <--- < f(Hs-1) < f(Hs) =H

of subgroups of H so that each subgroup is normal in the next one and all successive
quotients are cyclic, since the image of a cyclic group through a group morphism is still
a cyclic group. Thus H is polycyclic, as desired. O

Let us also recall the definition of nilpotent groups.

Definition 1.48. Let G be a group. The lower central series of G is the sequence (vi(G))i>1
of subgroups of G recursively defined by

v1(G) := G, yi+1(G) :==[7i(G),G], i = 1.

From this definition, an induction on i > 1 and the fact that automorphisms preserve
commutators, one sees that y;(G) is characteristic in G for any i > 1. In particular, y;(G)
isnormalin G for any i > 1. Moreover, 7;41(G) C yi(G) foranyi > 1.
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Definition 1.49. A group G is called nilpotent if its lower central series terminates, that
isthereisi > 1so that y;(G) = {ec}. In this case, the least integer ¢ > 1 so that y.+1(G) =
{ec} is called the nilpotency class of G.

Example 1.50. (i) Any abelian group is nilpotent, of nilpotency class ¢ = 1.

(ii) In the Heisenberg group H(Z), from Example 1.40(v), a direct computation shows
thatin fact z = [x, y] and that xz = zx, yz = zy. In particular, z is central, thus so is any
commutator, whence [[H(Z), H(Z)], H(Z)] = {I3}. This shows that H(Z) is nilpotent of
nilpotency class ¢ = 2. More generally, the group of upper unitriangular n X n matrices
over a unital commutative ring is nilpotent of nilpotency class n — 1.

We can now prove that any finitely generated nilpotent group is an example of a poly-
cyclic group.

Proposition 1.51. Let G be a finitely generated nilpotent group.
Then there exists a sequence of subgroups

Ngi1={eg} SNy <--- <Ny <N; =G
so that N;11 < N; and N;/Njy is cyclic, foranyi =1, ...,s. In particular, G is polycyclic.

Proof. Let(yi(G))i>1 be thelower central series of G. Since y;(G)/vi+1(G) is finitely gener-
ated and abelian (see [3, proposition 2.28]), by the structure theorem of finitely generated
abelian groups, there is a sequence of subgroups

Vi1 = Niyy S Nip—1 < -+ < Nj2 < Nj1 =i

with N; ;41 <N; jand N; j/N; j+1 cyclicforanyj = 1,...,t; — 1. We rename the sequence
Ni1,Ni2,...,Niyy =Noi,...,Nos, =Ns3q,... as Ni, N2, N3, ... to conclude. |

Combining the latter statement and Proposition 1.45, we deduce that any subgroup
of a finitely generated nilpotent group is finitely generated.

We conclude this section mentioning two important structural results on nilpotent
and polycyclic groups. The first one is a sort of converse to Example 1.50(ii). For the
statement, recall that a group G is linear if it is isomorphic to a subgroup of GL, (K), for
some n > 1 and some field K.

Theorem 1.52. Any finitely generated nilpotent group is linear. In fact, such a group is
embeddable into GL,(Z) for somen > 1.

The second statement is due to Malcev, and furnishes important examples of poly-
cyclic groups.

Theorem 1.53. Let G be a finitely generated and solvable subgroup of GL,(Z).
Then G is polycyclic.
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1.6 Haar measures on locally compact groups

We close this chapter recalling elementary facts on Haar measures for locally compact
topological groups.

Let thus G be a locally compact group. Its Borel 6—algebra B is the c—algebra gener-
ated by the open subsets of G. A measure u defined on 8 is left-invariant if u(gE) = p(E)
forany ¢ € G, E € 8B, and itis called regular if

(i) ForallB € 8B, u(B) = Bcv}r‘}fopen[u(V).
(ii) Forall opensubsetU C G, u(U) = sup p(K).

KcU, K compact

(iii) For all compactsubset K c G, u(K) < oo.
Theorem 1.54. Let G be a locally compact group, and let 8 be its Borel c—algebra.
Then there exists a regular left-invariant measure u on 8. Such a measure is unique up
to multiplication by positive constants.
Such a measure is then usually referred to as a Haar measure on the group.

Let us mention two basic properties of Haar measures. Recall that the support of a
measure y defined on a group G is the smallest closed subset F c G so that u(G \ F) = 0.

Proposition 1.55. Let G be a locally compact group, and u be a Haar measure on G. The
following assertions hold.

(1) supp(u) = G.
(i) The group G is compact if and only if u(G) < co.

Proof. We prove (i) by contradiction. Assume there is a non-empty open subset U ¢ G
with u(U) = 0. Then pu(gU) = Oforany g € G by left-invariance. If now K c G is compact,
we may find finitely many group elements g1,...,¢, € GsothatK c gyU U --- U g,U,
whence ;(K) = 0 as well. Since p is regular, it follows that y = 0, a contradiction. Thus
pu(U) > 0 for any open subset U ¢ G, whence supp(u) = G.

We now turn to the proof of (ii). Clearly if G is compact then u(G) < oo by regularity.
Conversely, assume that G is not compact, and let U be a compact neighborhood of e €
G. By induction, we construct a sequence (g, ),>1 so that

Sn+l € ngu
i=1

foranyn € N. Appealing Proposition 1.18, choose a neighborhood V ofe sothat V=! = V
and V"'V = V2 c U.Then g,V N g,V = 0if n # m, and thus

wG) = H(U giV) = i u(giV) = i u(V) = oo
=1 i=1

i>1 i

whence 1(G) = oo as claimed. O
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Notes The metric coarse category
2. The metric coarse category

The goal of this chapter is to develop the appropriate framework to study topological
groups as metric spaces.

2.1 Coarsely Lipschitz maps and large-scale Lipschitz maps

An upper control is a non-decreasing function @, : R, — R, and a lower control is
anon-decreasing function ®_: Ry — R, U {oo} so that tlim D_(t) = oo.
—00

If X, Y are pseudo-metric spaces and f : X — Y is amap, an upper control for f is an
upper control @, so that

dy(f(x), f(x")) < Do(dx(x, x"))

forany x, x” € X, and dually a lower control for f is alower control ®_ so that
D_(dx(x,x')) < dy(f(x), f(x))

foranyx, x’ € X.

Definition 2.1. Let X, Y be pseudo-metric spaces and let f: X — Y be a map. We say
that f is

(i) coarsely Lipschitz if there exists an upper control for f.

(ii) coarsely expansive if there exists a lower control for f.
(iii) a coarse embedding ifitis coarsely Lipschitz and coarsely expansive.
(iv) essentially surjective if f(X) is co-bounded in Y.

(v) ametric coarse equivalence if it is an essentially surjective coarse embedding.

If there exists ametric coarse equivalence f : X — Y, wesay that X and Y are coarsely
equivalent.

Let us start with equivalent reformulations of the above conditions.

Proposition 2.2. Let X, Y be pseudo-metric spaces and f : X — Y a map. The following
are equivalent.

(i) Themap f is coarsely Lipschitz.

(ii) For allR > 0, there exists S > 0 so that if x,x’ € X have dx(x,x’) < R, then

dy(f(x), f(x)) < S.

(iii) For any sequence of points (x,)nen, (X}, )nen in X withsup dx(x,, x,) < co, we have
neN

sup dy(f(xn), f(x},)) < 0.
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Proof. (i) = (ii) : Suppose that f is coarsely Lipschitz, and denote @, an upper control
for f. LetR > 0, and set S := ®,(R) > 0. Then, if x, " € X are so that dx(x, x’) < R, it
follows that

dy(f(x), f(x') < D4 (dx(x, ¥') < D1(R) = §
since f is coarsely Lipschitz and @, is non-decreasing. Thus (ii) holds.

(ii) = (ii) : Let (x;)nen, (x},)nen be two sequences of points in X with C < oo, where
C :=supdx(xy,, x,). Using (ii), there is S > 0 so that

neN
dy(f(x), f(x')) < S
ifdx(x,x") < C.Asdx(xy, x;,) < Cforanyn € N, we have also
dy(f(xn), f(x})) < S

foranyn € N, and thus sup, ey dy(f (xn), f(x],)) < S < oo, which shows (iii).
(iii) = (@) : For ¢ € R, define

D, (c) :=sup{dy(f(x), f(x") : x,x" € X,dx(x,x") < c}.

Then @, is positive and non-decreasing. Towards a contradiction, suppose that ®,(c) =
oo for some ¢ € R,. This implies there exist two sequences (x;)uen, (x7,)neny € X with
dx(xy, x),) < cforanyn € Nand

Tim dy(f (xa, f(x})) = @4(c) = o0

which is excluded by (iii). Hence @, takes only finite values, and thus is indeed an upper
control for f. ]

Dualising the above proof, one gets the same statement for coarsely expansive maps.

Proposition 2.3. Let X, Y be pseudo-metric spaces and f : X — Y a map. The following
are equivalent.

(i) The map f is coarsely expansive.

(ii) Forallr > 0, thereexistss > 0 so thatifx,x’ € X havedx(x,x") > r, then one has

dy(f(x), f(x')) = s.

(iii) For any sequence of points (x,)nen, (X,)nen in X with lim dx(x,, x;,) = oo, we have
n—-00
Tim dy(f(xa), f(x}) = .

Given two maps f, f': X — Y between pseudo-metric spaces, we say that f” is close
to f (or f’ is at bounded distance from f) if there exists C > 0 so that

dy(f(x), f(x')) < C

forany x, x” € X. This is the same as requiring that
sup dy(f(x), f(x)) < eo
xeX

and, in this case, we write f ~ f’.
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Lemma 2.4. Closeness is an equivalence relation.

Proof. Clearly f ~ f asdy(f(x), f(x)) = 0 for any x € X. Symmetry of ~ follows from
symmetry of dy, and transitivity follows from the triangle inequality for dy. O

The next result shows that properties from Definition 2.1 are invariant when taking
close maps.

Proposition 2.5. Let X, Y, Z be pseudo-metric spaces, f, f': X — Y two close maps, and
2,81 Y — Z two close maps.

(i) The map f is coarsely Lipschitz (resp. coarsely expansive, a coarse embedding, essen-
tially surjective, a metric coarse equivalence) if and only if f’ is coarsely Lipschitz (resp.
coarsely expansive, a coarse embedding, essentially surjective, a metric coarse equivalence).

(ii) If f, g are both coarsely Lipschitz (resp. coarsely expansive, coarse embeddings, essen-
tially surjective, metric coarse equivalences), then g o f is coarsely Lipschitz (resp. coarsely
expansive, a coarse embedding, essentially surjective, a metric coarse equivalence).

(iii) If g is coarsely Lipschitz, then g o f and g’ o f" are close.

Proof. (i) Suppose f is coarsely Lipschitz, and let C > 0 be so that dy(f(x), f’(x)) < C for
any x,x” € X. LetR > 0. As f is coarsely Lipschitz, we find K > 0 so that

dx(x,x") < R = dy(f(x), f(x")) < K.
Set S := K+ 2C, andlet x, x’ € X with dx(x, x") < R. Then it follows that
dy(f'(x), f/(x") < dy(f'(x), f(x)) + dy(f(x), f(x") + dy(f(x'), f(x))

<K+2C
=S.

As R > (0 was arbitrary, Proposition 2.2 guarantees that f’ is coarsely Lipschitz as well.
The converse follows swapping the roles of f and f”.

Now, suppose that f is essentially surjective. As above, let C > 0 be so that

dy(f(x), f'(x)) < C

forany x, x” € X, and let C’ > 0 be so that any point in Y is at distance at most C’ from
the image of f. Let y € Y, and choose x € X with dy(f(x), y) < C’. Then we get that

dy(f'(x), y) < dy(f'(x), f(x)) + dy(f(x),y) < C+ C".

Hence any point of Y is at distance at most C + C’ from the image of f, i.e. f’ is essentially
surjective. Once again, the converse follows by symmetry, and the proofs for the other
properties are completely similar.

(ii) Here also we only do the proof for one of the properties, and similar arguments apply
for the others. Suppose for instance that f and g are both coarsely expansive. Let r > 0.
Applying Proposition 2.3(ii) to f, we find s > 0 so that

dx(x,x") > r = dy(f(x), f(x")) = s
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and applying now Proposition 2.3(ii) to g, thereis t > 0 so that

dy(y,y') = s = dz(g(y), g(y)) > t.
Combining these two implications, we now conclude thatifx, x” € X aresothatdx(x, x") >
r,thendz((g o f)(x),(g o f)(x’)) > t, proving that g o f is coarsely expansive.

(iii) Let C > 0 be so thatdy(f(x), f'(x)) < C foranyx € X, andlet C’ > 0 playing the same
role for ¢ and g’. As g is coarsely Lipschitz, there is K > 0 so that dz(g(y), g(v")) < Kif
dy(y,y’) < C. Then for any x € X one has

dz(g(f(x)), §'(f'(x))) < dz(g(f (x)), g(f'(x))) + dz(g(f"(x)), §'(f'(x))) < K+’

whence g o f and g’ o f” are close. O

This proposition motivates then the next definition.
Definition 2.6. Let X, Y be pseudo-metric spaces. A coarse morphism from X to Y is a
closeness class of coarsely Lipschitz maps from X to Y.

The metric coarse category is the category whose objects are pseudo-metric spaces
and whose morphisms are coarse morphisms.

Definition 2.7. Let X, Y be pseudo-metric spaces and f: X — Y be a map. We say that

fis

(i) large-scale Lipschitz if it has an affine upper control, i.e. there exist c; > 0, ¢} > 0
so that

dy(f(x), f(x") < cpdx(x,x") + ¢}
foranyx, x’ € X.

(ii) large-scale expansive if it has an affine lower control, i.e. there existc_ > 0,c” > 0
so that

dy(f(x), f(x) = c_dx(x,x") — c_
foranyx, x’ € X.

(iii) aquasi-isometricembeddingifitislarge-scale Lipschitz and large-scale expansive.

(iv) a quasi-isometry if it is an essentially surjective quasi-isometric embedding.

If there is a quasi-isometry f: X — Y, we say that X and Y are quasi-isometric, and
we denote X ~g1. Y. Aswewill see below, ~g ;. is an equivalence relation among pseudo-
metric spaces.

Remark 2.8. In particular, any large-scale Lipschitz map is coarsely Lipschitz, and any
large-scale expansive map is coarsely expansive.
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Example 2.9. (i) Consider X = Z with its usual distance (induced from that of R) and
Y = R with its usual distance. The natural inclusion Z < R is a quasi-isometry, since it
is an isometric map and since any real number is at distance at most 1 from an integer,
namely its integer part.

since it is an isometry and since any n—tuple of real numbers (x4, . . ., x;,) is at distance at
most \/n from an n—tuple of integers, namely (| x1, ..., [x.]).

More generally, for any n > 1, the natural inclusion Z" — R" is a quasi-isometry,

(ii) Likewise, the natural inclusion 2Z <— Zis also a quasi-isometry, since it is an isomet-
ric map and since any integer is at distance at most 1 from an even integer.

Here goes the natural analog of Proposition 2.5 for large-scale Lipschitz/expansive
maps.

Proposition 2.10. Let X,Y, Z be pseudo-metric spaces, f, f': X — Y two close maps,
andg,g Y — Z two close maps.

(i) The map f is large-scale Lipschitz (resp. large-scale expansive, a quasi-isometric em-
bedding, a quasi-isometry) if and only if f’ is large-scale Lipschitz (resp. large-scale ex-
pansive, a quasi-isometric embedding, a quasi-isometry).

(ii) If f, g are both large-scale Lipschitz (resp. large-scale expansive, quasi-isometric em-
beddings, quasi-isometries), then g o f is large-scale Lipschitz (resp. large-scale expansive,
a quasi-isometric embedding, a quasi-isometry).

This in turn leads to a natural analog of the metric coarse category for large-scale Lip-
schitz maps.

Definition 2.11. Let X, Y be pseudo-metric spaces. A large-scale morphism from X to Y
is a closeness class of large-scale Lipschitz maps from X to Y.

The large-scale category is the subcategory of the metric coarse category whose ob-
jects are pseudo-metric spaces and whose morphisms are large-scale Lipschitz morphisms.

Definition 2.12. Let X,Y be pseudo-metric spaces and f: X — Y be a map. We say
that f is

(i) Lipschitz if thereis c; > 0 so that

dy(f(x), f(x')) < codx(x, x7)
foranyx, x’ € X.
(ii) bilipschitz if there exist cy > 0, c— > 0 so that
c_dx(x, %) < dy(f(x), f(x) < crdx(x,x')
foranyx, x” € X.

(iii) a bilipschitz equivalence if it is bilipschitz and surjective.
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Let us now give additional examples of such maps.

Example 2.13. (i) Let f: X — Y be a map between two pseudo-metric spaces. If X has
finite diameter, then f is large-scale expansive, since

dy(f(x), f(x') 2 0 2 dx(x, %) - diam(X)
forall x, x” € X. If rather f(X) has finite diameter, then f is large-scale Lipschitz, since

dy(f(x), f(x)) < diam(f(X))

forall x, x” € X. Lastly, if Y has finite diameter and X # 0, then f is essentially surjective.
Combining these three facts, it follows that any non-empty pseudo-metric space of finite
diameter is quasi-isometric to the one point space.

(ii) Forany p > 1, the map Idg»: (R", dw) — (R", d,) is a bilipschitz equivalence, since
deolx,¥) < dy(x, y) < NP des(x, y)

for any x, y € R", where the metric d,, d., are defined as
n L [4
dp(x,y) = (Z; |xi —yilp) , doo(x,y) = max lxi = yil
1=

foranyx = (x1,...,x0), ¥y = (Y1,-..,Yyn) € R™
(iii) Let (X, d) be a pseudo-metric space. Define a metric d; by setting

dqi(x, x") := max(1, d(x, x"))

forallx # x’ € Xand d;(x,x) = O forall x € X. Thenthe map Idx: (X,d) — (X,d;)isa
quasi-isometry. Define now another metric dj,, on X by the formula

din(x, x") :=In(1 + d(x,x")), x,x" € X.

The map Idx : (X,d) — (X, d1,) is a metric coarse equivalence, since it is surjective and
the functions @_(t) = @, (t) = In(1+t) are lower and upper controls for Idx. We claim that
Idx: (X,d) — (X, dy,) is large-scale expansive if and only if (X, d) has finite diameter.

Proof. 1f (X, d) has finite diameter, Idx is large-scale expansive by (i) above. Conversely,
assume there exist c_ > 0, ¢’ > 0 with

di(x, x") =In(1+d(x,x")) = c_d(x,x") =

for all x, x’ € X. Towards a contradiction, assume that diam(X,d) = oo, and pick two
sequences (Xy)nen, (x),)nen in X so that d(x,, x},) — oo asn — co. It follows from the
assumption that

In(1 + d(x,, x),)) .- c.
d(xn/x;l) - d(xﬂ/xii)
for all n € Nlarge enough. Letting n — oo in this inequality provides c_ < 0, a contradic-
tion. Thus (X, d) must have finite diameter. O
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(iv) A pseudo-metric space X is hyperdiscrete if the set
{(x,x") e X? :dx(x,x)) < c,x # x'}

is finite for any ¢ > 0. Then every map from a hyperdiscrete pseudo-metric space to any
pseudo-metric space is coarsely Lipschitz.

(v) Let X be a metric space, Y a pseudo-metric space, and suppose there is ¢ > 0 so that
dx(x,x”) > cforallx # x’ € X. Thenamap f: X — Yislarge-scale Lipschitzif and only
ifitis Lipschitz. Indeed, suppose that f is large-scale Lipschitz, which means there exist
c+ > 0,c}, > 0so that

dy(f(x), f(x")) < cedx(x,x") + ¢’
foranyx,x’ € X.Now1 < M for all x, x’ € X, and it follows that

4

A (f), f() < (e + =F)dx(x,x)
foranyx, x’ € X.

The next lemma ensures that control functions are almost invertible.

Lemma 2.14. (i) Let®,: Ry — R, be an upper control. The functionW_: R, — R, U
{0} defined by
W_(s):=inf{r >0: Dy (r) >s}, s=>0

is a lower control so that\WV_(®.,(t)) < t forallt > 0.
(ii) Letd_: Ry — R4 U {oo} be an upper control. The functionW.,. : Ry — R, defined by

W.o(s):=sup{r 20:D_(r)<s}, s=>0
is an upper control so that WV, (®_(t)) > t forallt > 0.

Proof. We only prove (i) since the proof of (ii) is identical. Clearly W_(s) > 0 foranys > 0.
Next, if s; < s9, and if r > 0is so that ®,(r) > so, then also ®,(r) > s1, whence W_(s1) < r.
It follows that W_(s;) < inf{r > 0 : ®.(r) > sa} = W_(s2), and W_ is non-decreasing.
Lastly, if t > 0, we have

W_(Ou(t)) =inf{r 2 0: O (r) > D4(H)} <t
sincet € {r >0:D.(r) > O.(t)}. |

Proposition 2.15. Let X, Y be pseudo-metric spaces, f : X — Y a coarsely Lipschitz map,

and 7 the corresponding morphism in the metric coarse category. The following claims
hold.

i IfX #0, 17 is an epimorphism if and only if f is essentially surjective.

(i) The morphism f isa monomorphism ifand only if f is coarsely expansive.
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(iii) The morphism f is an isomorphism if and only if f is a metric coarse equivalence.

Moreover; if X # 0, this holds if and only if f is an epimorphism and a monomor-
phism.

Proof. (i) Assume first that f is essentially surjective, and let ¢ := sup dx(y, f(X)). Con-
yey

sider a pseudo-metric space Z and two coarsely Lipschitz maps ki, ho: Y — Z so that
hio f ~ hyo f. Hence thereis ¢’ > 0 so that

dz(hi(f(x)), hao(f(x))) < ¢

for any x € X. Moreover, as h, hy are coarsely Lipschitz, we can find ¢y, c2 > 0 so that

dy(y,y’) < c = dz(hi(y), hi(y") < c1, dy(y,y') < c = dz(ha(y), ha(y')) < c2

forally,y’ € Y. Letnow y € Y, and choose x € X with dy(y, f(x)) < c. It then follows
from the above implications that

dz(h1(y), ha(y)) < dz(h1(y), hi(f(x))) + dz(hi(f (x)), ha(f (x))) + dz(h2(f (x)), h2(y))

<cy+c +oeo.

As y € Y was arbitrary, this proves that iy ~ hs, so ]_” is an epimorphism.

Conversely, suppose f is not essentially surjective. Define h1, ho: Y — Ry by hy(y) =
0, and ha(y) = dy(y, f(X)). Thenhyo f = hyo f =0,s0h;0 f ~ hao f,buthy + hy, as
h1(Y) = {0} isbounded in R while h2(Y') is not. As h, h are coarsely Lipschitz (and thus
morphisms in the metric coarse category), we deduce that f is not an epimorphism.

(ii) Suppose now that f is coarsely expansive. Let @_ be a lower control for f and W an
upper control asin Lemma 2.14. Let W be a pseudo-metric spaceandlet iy, ha: W — X
be two coarsely Lipschitz maps so that f o h; ~ f o hy. Hence there is ¢ > 0 so that

dy(f (hi(w)), f(ha(w))) < ¢

forany w € W. It follows that

dx (hi(w), ho(w)) < W (P_(dx(hi(w), ha(w))))
< Wi(dy(f (hi(w)), f(ha(w))))
< W.i(c)

for any w € W, which shows that iy ~ hs. Thus 7 is a monomorphism.

Conversely, suppose that f is not coarsely expansive. This implies there existc > 0
and (x,)nen, (x7,)nen € X with lim dx(x,, x],) = co and
n—oo

dy(f(xy), f(x),)) < c

foralln € N. Considernow W := {n? : n € N} endowed with the usual metric (dy (n?, m?) =
|n? —m?|,n,m € N), and the maps hy, ha: W — X, h1(n?) = x,, ho(n?) = x),. AsWisa
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hyperdiscrete pseudo-metric space, Example 2.13(iv) applies and guarantees that h, hs
are coarsely Lipschitz. Now f o hy ~ f o hg, but hy + hy asdx(x,, x;,) — cowhenn — oo.

Hence f is not a monomorphism.

(iii) Suppose that f is a metric coarse equivalence. If X = Y = 0, there is nothing to prove.
IfY # 0, then so is X (since the only map ) — Y is not essentially surjective). Let ®_, O,
be lower and upper controls for f and let c > 0 be so that dy(y, f(X)) < cforanyy € Y.
Let W, be as in Lemma 2.14 and let W_ be the lower control given by

W_(s)=inf{r >0: D (r)+2c =5}, s > 0.

Foreachy € Y, pickx, € X sothatdy(y, f(xy)) < c¢,and define ¢: Y — X by ¢(y) := x,,.
Lety,y’ € Y. Then we have

dx(g(y), g(y")) < W (P_(dx(g(v), &(¥))))
< Wi(@dy(f(gw), f(gW))
= \Ij+(dY(f(xy)/ f(xy’)))
< Wi(dy(y,y') +2c)

which proves that s — @ (s + 2c) is an upper control for g, which is then coarsely Lips-
chitz. On the other hand, we have

dy(y,y’) < dy(y, f(g(y) +dy(f(gW)), f(g(y)) +dv(f(g(y)), y")
< O, (dx(g(y), 8(y') +2¢c

= D (dx(g(y), §)))

foranyy,y’ € Y, where D, (s) := Do(s) +2¢, s > 0. It follows that

W_(dy(y, y)) < V_(@.(dx(g(y), g¥))) < dr(g(y), g(¥")

forall y,y” € Y. Therefore g is coarsely expansive as well. By construction, we have
fog ~1Idy,so fogof ~ f,and as f is a monomorphism by (ii), we conclude that
g o f ~Idx, and finally that f is an isomorphism with inverse g.

Conversely, if f is an isomorphism, then f is essentially surjective by (i) and coarsely
expansive by (ii), thus it is a metric coarse equivalence. O

It follows from this result and the fact that compositions of metric coarse equiva-
lences are metric coarse equivalences that being coarsely equivalent is an equivalence
relation among pseudo-metric spaces.

Definition 2.16. Let X, Y be pseudo-metric spaces and let f : X — Y be a coarsely Lip-
schitz map. We say that f is

(i) coarsely right-invertible if there exists a coarsely Lipschitzmap g: Y — X so that
fog~Idy.
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(ii) coarsely left-invertible if there exists a coarsely Lipschitz map g: Y — X so that
go f ~ Idx.

(iii) coarsely invertible if it is both left-invertible and right-invertible.

Remark 2.17. If f: X — Y is coarsely Lipschitz and coarsely right-invertible, then j_f is
an epimorphism. Dually, if f is coarsely left-invertible, then f is a monomorphism. In

particular, f is coarsely invertible if and only if ? is an isomorphism, i.e. if and only if f is
a metric coarse equivalence.

Definition 2.18. Let Y be a pseudo-metric space. A subspace Z of Y is a coarse retract
of Y if the inclusion map i: Z < Y is left-invertible, i.e. there exists a coarsely Lipschitz
mapr: Y — Zsothatroi ~ Idz.

Retractions provide an alternative characterisations of coarse expansiveness and coarse
left-invertibility.

Proposition 2.19. Let X,Y be pseudo-metric spaces and f: X — Y be a coarsely Lips-
chitz map. Denote fin,: X — f(X) the map induced by f. Then the following holds.

(i) Themap f is coarsely expansive if and only if fin, is a metric coarse equivalence.

(i) Themap f is coarsely left-invertible if and only if it is coarsely expansive and f (X) is
a coarse retract.

Proof. (i) directly follows from the definitions.

(ii) Suppose that f is coarsely left-invertible and let g: Y — X be a coarsely Lipschitz
map so that g o f ~ Idx. Denote i the natural inclusion of f(X) into Y. It follows from

Remark 2.17 that ]_‘ is a monomorphism, so f is coarsely expansive by Proposition 2.15.
Now we have

Ids(x) 0 fim = f oldx ~ fim o (g i 0 fim)
and since fi, is a metric coarse equivalence by (i) we conclude that Idx ~ (fim © g) o i,
and fim o g is a coarse retraction from Y to f(X).

Conversely, suppose f is coarsely expansive and that f(X) is a coarse retract. Let
r: Y — f(X) be a coarse retraction. By (i), fim is @ metric coarse equivalence, so let

j: f(X) — X be a coarsely Lipschitz map so that j and ]_” are inverses of each other.
Then one has

(jor)of=jo(roi)o fim
~joldsex) © fim
=Jj© fim
~ Idx

whence j o r is a coarse left inverse for f. O
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Definition 2.20. Let X, Y be pseudo-metric spaces. We say that Y is coarsely retractable
on X if there is a coarsely right-invertible coarsely Lipschitz map from Y to X, or equiva-
lently if there is a coarsely left-invertible coarsely Lipschitz map from X to Y.

We conclude this part by the analog of Proposition 2.15 in the large-scale category.

Proposition 2.21. Let X,Y be pseudo-metric spaces, f: X — Y a large-scale Lipschitz

map, and f the corresponding morphism in the large-scale category. The following equiv-
alences hold.

() IfX # 0, f is an epimorphism if and only if f is essentially surjective.
(i) The morphism f is a monomorphism ifand only if f is large-scale expansive.

(iii) The morphism 17 isan isomorp_hism ifand only if f is a quasi-isometry. Moreover, if
X # 0, this holds if and only if f is an epimorphism and a monomorphism.

2.2 Coarse and large-scale properties

Let (X, dx) is a pseudo-metric space and ¢ > 0. If x,x’ € X and n > 0, a c—path of n
steps from x to x’ in X is a sequence

X =X0,X1,..., Xn-1,Xn = X’
of points in X so thatdx(x;_1,x;) < cforalli=1,...,n.

Definition 2.22. Let (X, dx) be a pseudo-metric space and ¢ > 0. We say that X is

(i) c—coarsely connected if for any pair of points x, x” € X, there is a c—path from x to

4

X

(ii) c—coarsely geodesic if there exists an upper control @ so that, for any pair of points
x,x’ € X, there is a c—path of at most ®(dx(x, x’)) steps from x to x’.

(iii) c—large-scale geodesic if there exista > 0, b > 0 so that for any pair of points x, x” €
X, there is a c—path of at most adx(x, x”) + b steps from x to x’.

(iv) c—geodesiciffor any pairofpointsx, x” € X, thereisac—pathx = xo, x1,...,x, = x’
so that

n
dx(x,2') = ) dx(xio1, ).
i=1
(v) geodesic if for any pair of points x, x’ € X with dx(x, x”) > 0, there exists an isomet-
ricmapo: [0,dx(x,x")] — X sothat 6(0) = x and o(dx(x, x")) = x’.

We say that X is coarsely connected (resp. coarsely geodesic, large-scale geodesic) if it is
c—coarsely connected (resp. c—coarsely geodesic, c—large-scale geodesic) for some ¢ >
0.
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Remark 2.23. (i) Clearly, we have

X geodesic = X c-geodesic
— X large-scale geodesic
— X coarsely geodesic
— X coarsely connected.

(ii) If X is c—coarsely connected (resp. c—coarsely geodesic, c—-large-scale geodesic, c—geodesic)
for some ¢ > 0, then X is C—coarsely connected (resp. C—coarsely geodesic, C—large-
scale geodesic, C—geodesic) for any C > c.

Proposition 2.24. Coarse connectedness, coarse geodesicity (resp. large-scale geodesicity)
are invariant under metric coarse equivalences (resp. quasi-isometries).

Proof. We show the proof for large-scale geodesicity, and the others are completely sim-
ilar. Suppose that f: X — Y isa (C, K)—quasi-isometry, with C > 1 and K > 0, and let
c > 0 be so that X is c—large scale geodesic and any point of Y is at distance at most c
from f(X). Lety,y’ € Yandletx,x” € X be so that

dx(y, f(x)), dx(y', f(x')) < c.
As X is c—large scale geodesic, there exista > 0, b > 0 and a c—path
X =X0,X1,...,X, =%
sothatn < adx(x,x’) +b. Set

vo=y,y1:=f(x1),y2:= f(x2), ..., Yn-1:= f(xu-1), yu =y’
Then one has
dy(yi-1, yi) = dy(f(xi-1), f(xi))

< Cdx(xj-1,xi)+K
<C-c+K

foralli=2,...,n—1,andalso

dy(yo, y1) = dy(y, f(x1))
< dy(y, f(x)) + dy(f(xo0), f(x1))
<c+(C-c+K)
=(C+1)c+K

and

dy(Yn-1,Yn) = dy(f (xn-1), y")
< dy(f(xn-1), f(xn)) + dy(f(x), y")
<c+(C-c+K)
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=(C+1)c+K.
Thusy =y, y1,...,y» =y isa((C + 1)c + K)—path between y and y" in Y, of at most
n <adx(x,x’)+b <a(Cdy(f(x), f(x'))+CK)+b <aC(2c+dy(y,y’)) +aCK +b

steps, and the latter is indeed an affine upper bound on the length » of the path in term
of the distance dy(y, y’) between y and y’. As y, y’ € Y were arbitrary, it follows that Y is
large-scale geodesic as well. O

In fact, we have the following characterization of those three properties.

Proposition 2.25. Let (X, dx) be a pseudo-metric space. The following claims hold.

(i) X is coarsely connected if and only if X is coarsely equivalent to a connected metric
space.

(ii) X iscoarsely geodesic if and only ifit is coarsely equivalent to a geodesic metric space.

(iii) X is large-scale geodesic if and only if it is quasi-isometric to a geodesic metric space.

The proof of this proposition relies on the next construction and its basic properties.

Definition 2.26. Let ¢ > 0, and let (X, dx) be a c—coarsely connected pseudo-metric
space. Let (Xmaus, dHaus) be the largest Hausdorff quotient of X, i.e. the quotient of X by
the equivalencerelation R defined as xRy <= dx(x, y) = 0. Let X, denote the connected
graph with vertex set Xpayus, in which edges connect pairs (x, y) € Xpaus X XHaus With
0 < dHaus(x, y) < c. Letd. be the combinatorial metric on X, with edges of length c.

Note that, by construction, (X, d.) is geodesic (hence connected).
Consider now the natural map ¢: (X, dx) — (X, d.), x — [x].

Lemma 2.27. Letc > 0, (X, dx) ac—coarsely connected pseudo-metric space. The natural
map ¢ : (X, dx) — (X, d.) has the following properties.

(i) Forallx,y € X,dx(x,y) < dc.([x], ly]). In particular, ¢ is large-scale expansive.

(i) The map @ is essentially surjective, and sup d.(w, p(X)) <

weX,

oo

(iii) If(X,dx) is coarsely geodesic, then ¢ is coarsely Lipschitz, and thus is a metric coarse
equivalence.

(iv) If(X, dx) is large-scale geodesic, then ¢ is large-scale expansive, and thus is a quasi-
isometry.
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Proof. All claims are straightforward, so we only show the proof of (iii). Assume X is
c—coarsely geodesic, and fix two points x, y € X. Then one finds a c—path

X=X0,X1,++-,Xn-1,Xn =Y
and an upper control ®: R, — R, so thatn < ®(dx(x, y)). Hence we get

de(@(x), o(y)) = de([xo0], [xn])
< dc([xol, [x1]) + -+ + de([xn-1], [xx])
=nc
< cP(dx(x,vy))
= d(dx(x, y))

where @ := ¢®. Thus ¢ is coarsely Lipschitz as claimed. m]

Proof of Proposition 2.25. For (i) we refer to [5, proposition 3.B.7], that uses a slight mod-
ification of the space (X, d.).

(i) If X is coarsely geodesic, then it is coarsely equivalent to a geodesic metric space by
Lemma 2.27(iii). Conversely, if it is coarsely equivalent to a geodesic metric space, it is
coarsely geodesic as a direct consequence of Remark 2.23 and Proposition 2.24.

(iii) is proved in the same way as (ii), using this time Lemma 2.27(iv). m|

Large-scale geodesicity can also be used to boost coarse properties for maps to large-
scale properties.

Proposition 2.28. Let X,Y be pseudo-metric spacesand f : X — Y a map.

(i) IfX islarge-scale geodesic and f is coarsely Lipschitz, then f is large-scale Lipschitz.

(i) IfX,Y arelarge-scale geodesic and f is a metric coarse equivalence, then f is a quasi-
isometry.

Proof. (i) Assume that X is c—large-scale geodesic, and leta > 0, b > 0 be so that any
pair of points x, x” € X can be joined by a c—path of at most adx(x, x") + b steps. As f is
coarsely Lipschitz, we find C > 0 so that

dx(x,x’) < c = dy(f(x), f(x")) < C. (3)

Let x,x’ € X and choose a c—path x = xg,x1,...,x, = x’ from x to x” of at most n <
adx(x,x") + b steps. Then

dy(f(x), f(x) < D dv(f(ximn), f(x:)
i=1

<Cn
< C(adx(x,x")+Db)
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= (aC)dx(x,x") + bC
where the first inequality follows from the triangle inequality and the second one follows
from (3). Hence f is large-scale Lipschitz.

(i) follows directly from (i) applied to f and to g: Y — X a metric coarse equivalence
sothatgo f ~Idx and f o g ~ Idy. O

2.3 Groups as pseudo-metric spaces

In this part, we use results of Chapter 1 to explain how topological groups can be seen
as objects in the metric coarse category. Additionally, this provides numerous examples
of metric coarse equivalences and quasi-isometries.

Definition 2.29. Let G be a topological group. A pseudo-metric d on G is adapted if it is
left-invariant, proper, and locally bounded.

Since a topological group G is a homogeneous space (Remark 1.15), a pseudo-metric
d on G is adapted if it is left-invariant, balls centered at the identity e € G are relatively
compact, and are neighborhoods of e € G for large enough radius.

We start with a metric characterisation of c—compactness.

Theorem 2.30. Let G be a locally compact group. The following claims are equivalent.
(i) Thegroup G is co—compact.
(ii) There exists an adapted continuous pseudo-metric on G.
(iii) There exists an adapted pseudo-metric on G.

(iv) There exists an adapted metric on G.

Proof. (i) = (ii) : Assume that G is c—compact and locally compact. By Theorem 1.34,
there is a compact normal subgroup K so that G/K is metrisable. Equivalently;, it is first-
countable (Theorem 1.32), and asitis also c—compact, Theorem 1.33 ensures there exists
on G/K aleft-invariant proper compatible metric d;,x. Now the map

d:GXG— [O/ +OO)/ (g/ h) L— dG/K(gK/ hK)
is an adapted continuous pseudo-metric on G.
(ii) = (iii) is obvious.
(iii) = (iv) : If d is an adapted pseudo-metric on G, then the map d’: G X G — [0, +o0)
defined by d’(g, h) =1+d(g, h)if ¢ # hand d’'(g, g) = 0is an adapted metric on G.
(iv) = (i) : Let d be an adapted metric on G. Then
G= U Bg(e, n)
neN
and subsets appearing in this union are compact since d is proper. Thus G is 6 —compact,

as announced. m|
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Theorem 2.30 gives other examples of coarsely Lipschitz maps, namely any continu-
ous homomorphism between c—compact locally compact groups.

Proposition 2.31. Let G, G2 be two o—compact locally compact groups, equipped with
adapted pseudo-metrics d, and d, respectively.

Iff: (G1,d1) — (Ga, d2) is a continuous homomorphism, then f is coarsely Lipschitz,
and it is coarsely expansive if and only if it is proper.

Proof. Let Ry > 0. By Proposition 2.2, we must find R2 > 0 so thatif g, h; € G; have
d1(g1, 1) £ Ry, then da(f(g1), f(g2)) < Ro.

The ball By := {g € G1 : di(eg,, g) < Ri} is relatively compact since d; is proper.
As f is continuous, f(B;) is relatively compact, and thus bounded in (G2, d2) since ds is
locally bounded (see the remark right after Definition 1.3, that applies since G is locally
compact). Hence there is R > 0 so that

f(B1) € By :={g € G2 : da(eg,, §) < Ra}.

Now, if g1, h; € Gy have d1(g1, h1) < Ry, then di(ec,, gl‘lhl) < R; by left-invariance, i.e.
g7 h1 € By, whence f(g;'h1) € By by the above inclusion. This means that

d2(€G21f(81_1h1)) < R2

or equivalently do>(f(g1), f(h1)) < Rg since f is ahomomorphism and ds is left-invariant.
It follows that f is coarsely Lipschitz.

Now, suppose f is coarsely expansive, and let ®_ be a lower control for f. Consider a
compact subset L C Go. As ds is locally bounded, there is Ry > 0 so that L C B, where
By is asabove. Let R; := inf{R > 0 : ®_(R) > Rz}. Since ®_(d;(eg,, §)) < da(ec,, f(g)) for
any g € Gy, it follows that

L) c fY(By) c By

and since d; is proper, B; is relatively compact. Thus f~!(L) is contained in a compact
set, and since L is closed (it is compact in G, which is Hausdorff) and f is continuous,
f7L(L) is closed in G;. We conclude that f~(L) is compact, and thus f is proper.
Conversely, assume f is proper, and let R2 > 0. Then By is compact, and f is proper,
so f ~1(By) is relatively compact in G;. The pseudo-metric d; being locally bounded, we
find Ry > 0 so that
f_l(Bg) C By = {g € Gy: dl(e(;l,g) < Ri}.

If g1, 11 € G, are so thatdy(g1, 1) > Ry, then g7 hy ¢ By, whence g7'h1 ¢ f71(Bo), ie.
f(g1)7'f(h1) ¢ Bo. Hence
dao(f(g1)" f(h), ec,) > Ro

which amounts to say that da(f(g1), f(h1)) > Ro by left-invariance of d;. We conclude
from Proposition 2.3 that f is coarsely expansive. O

In particular, we deduce that for a c—compact locally compact group, the adapted
pseudo-metric provided by Theorem 2.30 is unique up to metric coarse equivalence.
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Corollary 2.32. LetG be ao—compact locally compact group, H a closed subgroup, dg, d;
two adapted pseudo-metrics on G, and dy an adapted pseudo-metricon H. The following
hold.

() The inclusion map (H,dy) — (G, dg) is a coarse embedding.
(ii) Theidentity map ld;: (G,dc) — (G, dé) is a metric coarse equivalence.

Proof. (i) Note first that H being a closed subgroup of G, it is itself a c—compact locally
compact group, so Theorem 2.30 indeed ensures that dy exists. Now the natural inclu-
sion (H, dy) — (G, dg) is a continuous homomorphism, hence it is coarsely Lipschitz by
Proposition 2.31. It is also a proper map, hence it is also coarsely expansive by the same
result. Thus itis a coarse embedding.

(ii) The map Idg : (G, dg) — (G, d;) is of course essentially surjective, and coarsely Lip-
schitz, coarsely expansive still by Proposition 2.31. Hence it is a metric coarse equiva-
lence. O

In particular, any o —compactlocally compact group carries an adapted pseudo-metric
that makes it an object in the metric coarse category, well-defined up to metric coarse
equivalence.

We now turn to a metric characterisation of compact generation.

Definition 2.33. Let G be a topological group. A pseudo-metric 4 on G is geodesically
adapted if it is adapted and (G, d) is large-scale geodesic.

Definition 2.34. Let G be agroup and S c G a generating set. The word metric defined
by S on G is the metric ds given by

ds(g,h) :==min{n >0:3sy,...,5, € SU s g_lh =S1...S}
forany g, h € G. The corresponding word length is the map ¢s: G — N defined by

ls(g) :=dsl(ec, 8)
forany g € G.

Given a group G and a generating set S C G, it is easy to check that the metric space
(G, ds) is 1—-geodesic, in particular large-scale geodesic. Moreover, ds is left-invariant.

The next result shows that if S is compact, then ds is geodesically adapted.

Proposition 2.35. Let G be a topological group. The following statements hold.

(i) If G is locally compact and has a compact generating set S, then ds is geodesically
adapted.

(i) IfG carries an adapted pseudo-metric d so that (G, d) is coarsely connected (this is
the case if d is geodesically adapted for instance), then G is locally compact and com-
pactly generated.
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Proof. (i) We already know that d; is left-invariant and that (G, ds) is large-scale geodesic.
It is moreover proper, since balls of finite radius around e are compact as they are finite
unions of compact sets. It remains to check local boundedness, i.e. that any point of
G has a neighborhood of finite diameter. By homogeneity (Remark 1.15), it is enough

to check this condition for ec € G. By Proposition 1.37, there is n > 0 so that §n is a
neighborhood of e;. Its diameter with respect to ds is bounded by 2#, which concludes
the proof of (i).

(ii) Suppose that d is an adapted pseudo-metric on G, and let ¢ > 0 be so that (G, d) is
c—coarsely connected. Then the ball B;(eg, c) is relatively compact (as d is proper), and
thusits closure is compact, and is a generating set for G as (G, d) is c—coarsely connected.
Thus G is compactly generated, and its local compactness follows from local bounded-
ness of d. O

Next, we want to ensure that the choice of a compact generating set for a compactly
generated group does not affect its large-scale geometry.

Lemma 2.36. Let G be a compactly generated locally compact group, and letS, T C G be
two compact generating sets.

Then the identity map (G, ds) — (G, dr) is a bilipschitz equivalence.

Proof. As G islocally compact, we may apply Proposition 1.37(iii) and choose k, { € N so
thatT C §k, Sc Te. Thus

c :=supds(eg,t), ¢’ :=supdr(eg,s)
teT s€S

are two finite constants. Let g, h € G, letn := ds(g, h), and lets;,...,s, € SU S~!so that
¢ 'h = s;...s,. Then it follows that

dr(g, h) = dr(eg, g~'h)
=dr(eg,S1...54)
< dr(eg,s1)+dr(s1,81...5,)
= dr(eg,s1) +dr(eg,s2...54)
< dr(eg,s1) +dr(eg,s2) +dr(s2,52...5,)
< dr(eg,s1) +dr(eg,s2) + -+ dr(eg,sn)
<cdn
=c'ds(g, h)

using n times the triangle inequality and the left-invariance of dr. By symmetry, it follows
that 1ds(g, h) < dr(g, h) forany g, h € G. We conclude that

1
EdS(g/ h) < dT(g: h) < C,dS(g/ h)
forany g, h € G, sothatldg: (G,ds) — (G, dr) is a bilipschitz equivalence. O

49



Notes 2.3 Groups as pseudo-metric spaces

Lastly, we derive from our previous results a metric characterisation of compact gen-
eration for c—compact locally compact groups.

Theorem 2.37. Let G be ao—compact locally compact group, equipped with d an adapted
pseudo-metric. The following claims are equivalent.

(i) Thegroup G is compactly generated.

(i) The pseudo-metric space (G, d) is coarsely connected.
(iii) The pseudo-metric space (G, d) is coarsely geodesic.
(iv) There exists a geodesically adapted pseudo-metric on G.

(v) There exists a geodesically adapted metric on G.

In particular, among o—compact locally compact groups, compact generation is invariant
under metric coarse equivalence.

Proof. (i) = (iii) : Suppose G is compactly generated, and let S ¢ G be a compact
generating set. As observed above, (G, ds) is large-scale geodesic, in particular coarsely
geodesic, and the map

Idg: (G,d) — (G, ds)

is a metric coarse equivalence by Corollary 2.32, which applies since G is c—compact
and locally compact. Thus (G, d) is coarsely geodesic as well by Proposition 2.24, which
shows (iii).

(iii) = (ii) is Remark 2.23(i).
(i) = (i) is Proposition 2.35(ii).
(i) = (iv) is Proposition 2.35().

(iv) = (i) again is Proposition 2.35(ii), noting that a geodesically adapted pseudo-metric
d on G makes the pair (G, d) coarsely connected.

Thus, so far, we showed that the first four points of the statement are equivalent. It re-
mains to prove that (i) = (v). The implication (v) = (iv) is obvious, so that indeed (v)
— (i), and (i) = (v) is once again Proposition 2.35(i), noting that the word pseudo-
metric ds coming from a compact generating set S is actually a true metric.

In particular, among o—compact locally compact groups, compact generation is in-
variant under metric coarse equivalence as a consequence of Proposition 2.24. O

Here are the analogs of Proposition 2.31 and Corollary 2.32 in the large-scale category.

Proposition 2.38. Let G, G2 be two compactly generated locally compact groups, equipped
with two geodesically adapted pseudo-metrics d,, ds respectively.

If f: (G1,d1) — (G2, d2) is a continuous homomorphism, then f is large-scale Lips-
chitz.

Moreover, any metric coarse equivalence (G1,d1) — (Go, d2) is a quasi-isometry.
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Proof. Let f: (G1,d1) — (G2, d2) be a continuous homomorphism. Then f is coarsely
Lipschitz by Proposition 2.31, and (G, d1), (G2, d2) are both large-scale geodesic. Thus
Proposition 2.24(i) ensures that f is large-scale Lipschitz.

The second statement follows from Proposition 2.24(ii). m|

In the discrete setting, if G, H are finitely generated groups endowed with word met-
rics coming from finite generating sets, we deduce from Proposition 2.38 that any homo-
morphism f: G — H isaquasi-isometric embedding, and that any group isomorphism
from G to H is a quasi-isometry. In particular, any f € Aut(G) is a quasi-isometry.

Corollary 2.39. LetG be a compactly generated locally compact group, equipped with two
geodesically adapted pseudo-metrics dg, d.

Then the identity map
Idg: (G,dg) — (G, dy)

IS a quasi-isometry.
In particular, any compactly generated locally compact carries a geodesically adapted

pseudo-metric that makes it an object in the large-scale category, well-defined up to
quasi-isometry.
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3. Coarse geometric invariants

The goal of this section is to develop powerful tools to be able to distinguish pseudo-
metric spaces up to coarse embedding (resp. quasi-isometry), or on the other hand to es-
tablish that two given pseudo-metric spaces are coarsely equivalent (resp. quasi-isometric).

3.1 The Milnor-Schwarz lemma

The first result we present is a sufficient criterion to exhibit a quasi-isometry between
a group and a space on which it acts. Let us first introduce relevant terminologies.

Consider a topological group G, a non-empty pseudo-metric space (X, dx), and an
actiona: GXx X — X, (g,x) — gx. Forx € X and R > 0, denotebyi,: G — X,
g + gx the orbit map and

Sx,r :={g € G:dx(gx,x) < R} = iy (Bay(x, R)).
Definition 3.1. The actiona: G X X — X is
(i) faithfulifforany g # e € G thereis x € X with gx # x.
(ii) isometricifdx(gx, gx’) = dx(x,x’)forany g € G, x,x" € X.
(iii) metrically proper if S, r is relatively compactforall x € X and R > 0.

(iv) cobounded if there exists a subset F ¢ X of finite diameter so that

x=|JsF.

geG

(v) locally bounded if for any ¢ € G and any bounded subset B C X, there is a neigh-
borhood V of g in G so that VB is bounded in X.

(vi) geometric if it is isometric, metrically proper, cobounded and locally bounded.

If X is moreover locally compact, the action is proper if
{¢eG:gLNL+0}
is relatively compact in G for any compact subset L C X, and cocompact if there exists a
compact F ¢ X with
x=|JsF.
g€eG
Some observations are in order here.

Remark 3.2. (i) Leta: G X X — X be a continuous action of a locally compact group G
on a proper metric space (X, dx). Then this action is metrically proper if and only if it is
proper.
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Proof. Suppose a ismetrically proper, and take L ¢ X compact. Let R > 0. The collection
{Bay(x,R) : x € L} is an open cover of L, which is compact, so there exist x;,...,x, € L
so that

LcC de(xl,R) U---u de(xn,R).

Ifnow g € GissothatgLNL # 0,letz € gL N L and write z = gx = y forsome x, y € L.
By the above inclusion, x € By, (x;, R) and y € B4, (xj, R) forsome 1 < i,j < n. Then

dx(gx,x) =dx(y,x) < dx(y,x;) +dx(xj, x;) + dx(x;, x) < 2R + diam(L)

so that ¢ € S, or.diam(1), Which is relatively compact as a is metrically proper. Thus
{g € G: gLNL # 0} is contained in a relatively compact set, hence it is itself relatively
compact. We conclude that « is proper.

Conversely, if x € X and R > 0, then By, (x, R) is relatively compact as X is proper,
thus contained in a compact set L ¢ X, whence

Syr =iy (Bay(x,R) Cciy(L)={geG:gxelL}c{geG:gLNL#0}.
As the action is proper, the right most set above is relatively compact in G, so Sy r is rel-
atively compact in G as well. O

(ii) Under the same assumptions as in (i), « is cobounded if and only if it is cocompact.

Proof. If a is cobounded, there is a set F C X of finite diameter with

x=|JsF.

g€G

Since X is proper, F is relatively compact, so F is compact in X, and since also
X = U gf
g€G
we deduce that « is cocompact.

Conversely, if F ¢ X is a compact set whose translates cover X, then F has finite di-
ameter since X is proper, thus the action is cobounded. O

(iii) If a: G x X — X is a continuous action of a topological group G on a metric space
(X, dx) and that dx is locally bounded, then the action is locally bounded.
The Milnor-Schwarz lemma takes then the following form.

Theorem 3.3. Let G be a locally compact group, acting geometrically on (X,dx) a non-
empty pseudo-metric space. Let x € X. Definedsg: G X G — [0,+) by dc(g, h) :=
dx(gx, g'x).
Then dg is an adapted pseudo-metric on G, and the orbit map
ix: (G,dg) — (X, dx)
g &X

is a quasi-isometry. In particular, G is o—compact. Moreover, if (X, dx) is coarsely con-
nected, then G is compactly generated.
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Proof. The fact that d¢ is a pseudo-metric follows from the fact that dx is a pseudo-
metric. For the left-invariance, let g/, g, h € G, and note that

dc(g'g, §'h) = dx(g'gx, §'hx) = dx(gx, hx) = dc(g, h)

since the action of G on X is isometric. For the properness of d¢, note that
Bas(ec,R) ={g € G:dg(ec,8) < R} ={g € G:dx(x,8x) < R} =Sy

is relatively compact since the action is metrically proper. Thus dg is proper. Lastly, if
g € G, then there is a neighborhood V of g in G so that V{x} is bounded in X, as the
action is locally bounded. Since for any g, i’ € G we have

dg(g', h') =dx(g'x, h'x)

and since V{x} is bounded, it follows that V has finite diameter. Hence d; is locally
bounded, and it is therefore an adapted pseudo-metric on G, for which the orbit map
is an isometric map. As furthermore the action is cobounded, i, is essentially surjective,
hence it is a quasi-isometry. In particular, G is c—compact by Theorem 2.30. If moreover
(X, dx) is coarsely connected, then (G, d) is coarsely connected by Proposition 2.24, so
that G is compactly generated by Theorem 2.37. O

We can then characterise locally compact compactly generated groups as those groups
acting geometrically on geodesic metric spaces.

Corollary 3.4. Let G be a topological group. The following claims are equivalent.

(i) Thegroup G is locally compact and compactly generated.
(ii) There exists a geometric action of G on a non-empty coarsely geodesic metric space.
(iii) There exists a geometric action of G on a non-empty geodesic metric space.

(iv) There exists a geometric faithful action of G on a non-empty geodesic metric space.

Proof. (i) = (ii) : Assume first that G islocally compact and compactly generated. Choose
d an adapted pseudo-metric on G. Then (G, d) is coarsely geodesic by Theorem 2.37, and
it is easy to check that the action of G on (G, d) by left multiplication is geometric.

(ii) = (iii) : Assume that G is a geometric action on a non-empty coarsely geodesic met-
ric space (X, d), and let ¢ > 0 be so that pairs of points in X can be joined by c—paths.
Let (X., d.) be the metric graph given in Lemma 2.27. Recall that there is a metric coarse
equivalence (X, d) — (X,, d.), and note that the action of G on (X, d) has a natural ex-
tension to an action of G on (X,, d.). This action now satisfies (iii).

(iii) = (iv) : Assume that G acts geometrically on (X, dx) a non-empty geodesic metric
space. Let B denote the unit ball of £*(G, ), where p is a Haar measure on G. The metric
space (B, dg), where

dg(b,b’):=|[b-0V'||, b,b" € B
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is geodesic, and the natural action of G on ¢?(G, u) induces a faithful continuous isomet-
ricactionof G on (B, dp). Setnow Y = X X B, equipped with the product metric dy defined
by

dy((x,b),(x’,b")? = dx(x,x")> + dg(b,V")?, x,x’ € X, b,V € B.

Now the diagonal action of G on Y satisfies (iv).

(iv) = (i) : Assume that G acts faithfully and geometrically on a geodesic metric space
(Y, dy). Fixyp € Y and define a pseudo-metric on G by d(g, §’) := dy(gyo, §'yo), for any
<,8" € G. Thend is adapted and (G, d) is coarsely connected, so that G is locally compact
and compactly generated by Theorem 2.37. O

We also formulate a version of Theorem 3.3 for discrete groups.

Corollary 3.5. Let G be a group acting isometrically, properly and cocompactly on a non-
empty proper geodesic metric space X.

Then G is finitely generated and quasi-isometric to X, and for any x € X the orbit map
G — X, g — gx isa quasi-isometry.

Example 3.6. (i) For any n > 1, the natural action of Z" on R” is isometric, proper and

cocompact. As R" is geodesic and proper, it follows that Z" ~g ;. R", as in Example 2.9(i).

(ii) If G is finitely generated and S is a finite symmetric generating for G, then the natural
action of G on its Cayley graph Cay(G, S) is isometric, proper, and cocompact since it is
transitive on the vertices and there are |S| equivalence classes of edges. Thus G is quasi-
isometric to Cay(G, S).

(iii) The Cayley graph of Zy + Zy * Zy * Zy = {a,b,c,d : a®> = b? = ¢ = d* = 1) with respect
toS ={a,b,c,d}isa4d-regular tree, and is therefore quasi-isometric to any Cayley graph
of Fo. Thus Zy * Zy * Zy * Zs is quasi-isometric to F.

We now deduce corollaries of interest to get more examples of pairs of quasi-isometric
groups.

The first one completes a discussion in subsection 1.5.

Corollary 3.7. Let G be a finitely generated group and H < G a finite index subgroup.
Then H is finitely generated and quasi-isometric to G.

Proof. Consider S a finite generating set for G and the metric space (G, ds). Let H acts on
(G, ds) by left-multiplication. This action is isometric, proper, and cocompact since a fi-
nite set of representatives of left H—cosets is a compact subset of (G, ds) whose translates
by H cover G. Moreover, (G, ds) is geodesic and proper (balls of finite radius centered at
ec € G are finite), whence H is finitely generated and quasi-isometric to G by Corollary
3.5. Moreover, a quasi-isometry is given by an arbitrary orbit map, for an arbitrary choice
of base pointin G. The choice e € G shows that the natural inclusion H <— G is a quasi-
isometry. O

Example 3.8. (i) The dihedral group Do, = {a,t : a®> = 1,ata”! = t~') = Z=Z/2Z contains
Z as a finite index subgroup, and thus is quasi-isometric to Z.
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(ii) The group SL2(Z) contains a finite index subgroup isomorphic to F (see e.g. [9, propo-

sition 4.4.2]), so SLy(Z) ~q.1. Fa.

Corollary 3.9. Let G be a finitely generated group and N < G be a finite normal subgroup.
Then G is quasi-isometric to G/N.

Proof. The natural action of G on G/N satisfies all assumptions of the Milnor-Schwarz
lemma, whence the claim. O

This implies for instance that SLy(Z) is quasi-isometric to PSLy(Z) since the latter is
the quotient of SL»(Z) by its center {+I>}.

For the last application, we need a terminology.

Definition 3.10. Let G and H be two groups. We say that they are

(i) commensurable if they contain finite index subgroups G’ < G, H" < H so that
G = H'.

(ii) weakly commensurable if they contain finite index subgroups G’ < G, H’ < H with
finite normal subgroups N < G’, M < H’ so that G’/N = H’/ M.

The next statement is then a direct consequence of our previous results.

Corollary 3.11. Let G be a finitely generated group.

IfH is weakly commensurable to G, then H is finitely generated and quasi-isometric to
G.

Proof. Assume H is weakly commensurable to G, and let G’, H’, N, M be as in Definition
3.10. As G is finitely generated, we deduce from Corollary 3.7 that G’ is finitely generated,
and thus G’/ N is finitely generated (Proposition 1.41). Hence H’/M is finitely generated,
so that H’ is finitely generated. Thus H is finitely generated, and we have

H~g1H ~g1 H/M =G'/N ~q1. G ~01. G

where the first and last quasi-isometries are given by Corollary 3.7, and the second and
the third quasi-isometries are given by Corollary 3.9. The proofis complete. O

3.2 Maetric lattices in pseudo-metric spaces

Now, we are interested in developing coarse geometric invariants in order to distin-
guish two given pseudo-metric spaces up to coarse embeddings (resp. quasi-isometries).

One such invariant, called growth, is introduced in the following section. It is straight-
forward to define in the discrete setting, but generalizing it to arbitrary pseudo-metric
spaces requires an additional tool, called metric lattices, which are precisely discrete ap-
proximations of a pseudo-metric space. We introduce the relevant terminologies and
results in this section.
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Definition 3.12. Let ¢ > 0. A pseudo-metric space (D, d) is called c—uniformly discrete
ifd(x,x’) > cforany x,x’ € D, x # x’. The space (D, d) is uniformly discrete if it is
c—uniformly discrete for some ¢ > 0.

Note that a uniformly discrete pseudo-metric space is in fact a metric space.

Definition 3.13. A c—metric lattice in X is a subspace L that is c—uniformly discrete and
cobounded. A subspace L C X is a metric lattice if it is a c—metric lattice for some ¢ > 0.

Remark 3.14. If L ¢ X is a metric lattice, then the natural inclusion L — X is a quasi-
isometry. In particular, all metric lattices in X are quasi-isometric.

Such a lattice always exists in a non-empty pseudo-metric space.

Proposition 3.15. Let X be a non-empty pseudo-metric lattice and xo € X. Foranyc > 0,
there is a c—metric lattice L in X containing x, so that

supd(x,L) < c.
xeX

In particular, any pseudo-metric space has a metric lattice. More generally, given M a
c—uniformly discrete subspace of X, there is a c—metric lattice in X containing M.

Proof. Let ¢ > 0 and let M C X be c—uniformly discrete. Apply Zorn’s lemma to the
collection of subsets L ¢ X sothat M c L and

inf d(€,0') > c.
(+0’el

A maximal element of this collection is precisely a c—metric lattice L of X containing M
so that

supd(x,L) <c
xeX

and the last statement is established. The first one follows with M = {x}. O

The next proposition will also be useful below.

Proposition 3.16. Let X, Y be pseudo-metric spaces, and let f : X — Y be a map.

() Iff is coarsely expansive, then there exists c > 0 so that for any c—metric lattice L in
X, we have

dy(f(6), f(£') 2 1
forany?,l’ € L.

(ii) Iff is large-scale Lipschitz, then f; : L — X is Lipschitz for every metric lattice L in
X.

(iii) If f is a quasi-isometric embedding, then there exists k > 0 so that, for any k—metric
lattice L in X, fi: L — f(L) is bilipschitz. In particular, if f is a quasi-isometry,
thereisk > 0 so that f (L) is a metric latticeinY for any k—metric latticeL in X.
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Proof. (i) Assume that f is coarsely expansive, and let ®_ be alower control for f. Choose
¢ > 0sothat ®_(c) > 1 (such a c exists as tlim ®_(t) = o). Thenif L is a c—metric lattice

inXand?, {’ € L, one gets

dy(f(0), (') = D_(dL(¢,€') =2 D_(c) > 1

asdp(f,?) > c and ®_ is non-decreasing.

(ii) directly follows from the fact that a metric lattice is uniformly discrete and Example
2.13(v).

(iii) Suppose f: X — Y is a quasi-isometric embedding, so thereisa > 1, b > 0 with

“dx(e, ) = b < dy(F(), f(¥) < adx(x, ¥) +b
forany x,x’ € X. If b = 0, then f is bilipschitz on X, so we may suppose thatb > 0. Let
k :=2ab > 0, and let L be a k—metric lattice in X. Then for any ¢, ¢’ € L one has

B0, F(E) 2 il €)=

1 , dr(¢, )

1 1 )
(E - %)dL(l’,f)
1

= gd[‘(g,f )

v

Additionally, since f is large-scale Lipschitz, (ii) ensures that f is Lipschitz on L. Thus we
conclude that f;; : L — f(L) is bilipschitz. O

3.3 Growth for pseudo-metric spaces

We can define now properly growth for a certain class of pseudo-metric spaces.

Definition 3.17. A pseudo-metric space (X, dx) is locally finite if all its balls are finite,
and uniformly locally finite if

sup |Bg, (x,7)] < o0
xeX

forallr > 0.

Observe that a uniformly locally finite pseudo-metric space is locally finite.

Example 3.18. (i) A discrete metric space is locally finite if and only if it is proper.

(ii) The real line X = R, with its usual metric, is not uniformly locally finite. The same
applies more generally for X = R", n > 1.

(iii) Even more generally, geodesic metric spaces are not locally finite. Hence, for in-
stance, any Banach or Hilbert space is not locally finite.
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(iv) If G is a finitely generated group and S C G is a finite symmetric generating set for G,
then the metric space (G, ds) is uniformly locally finite.

(v) The vertex set of a connected graph, endowed with the combinatorial metric, is uni-
formly locally finite if and only if the graph is of bounded degree. If N € N is a bound on
the degrees of vertices of the graph, then balls of radius n have at most N(N — 1)"~! ver-
tices, for all n > 1. This generalises the previous point, since a finitely generated group is
the vertex set of its Cayley graph with respect to a finite symmetric generating set S, for
which the combinatorial metric is exactly the word metric ds.

Definition 3.19. Let (X, dx) be a locally finite pseudo-metric space, and x € X. The
growth function g3, : Ry — Nof X around x € X is defined as

Bx (1) := |Bay(x,7)], ¥ > 0.

In order to be able to define an invariant for spaces, we introduce the following equiv-
alence relation.

Definition 3.20. Let f, f": R, — R, be non-decreasing. We say that f’ dominates f,
and we write f < f’, if there exists A, u > 0, ¢ > 0 so that

f(r)<Af'(ur+c)+c

foranyr > 0. We say that f is equivalent to f’, and we write f ~ f’, if f dominates f’ and
if f” dominates f.

Itis easy to check that ~ isindeed an equivalence relation, and given a non-decreasing
function f on R,, its class refers to its equivalence class modulo the relation ~. If no
confusion is possible, we often write f for the class of a function f.

Example 3.21. (i) Leta,b > 0andc,d > 1. One has r”? < b if and onlyifa < b (and thus
r* ~rPifand onlyifa = b),and ¢" ~ d".

Proof. We start with the first equivalence. If 2 < b, then 7* < r? foranyr > 0,s0 r* < r?.

Conversely, assume that 7" < r?, meaning there are A, u > 0, ¢ > 0 so that
< Aur +c)’ +c

b b
foranyr > 0. Hence r* < Ar’(u + 7)” + c forany r > 0, so that

a-b <A E b i
< Au+ r) + 5
foranyr > 0. If a > b, then letting r — oo in the above inequality would provide a

contradiction, since the left hand side tends to co while the right hand side tends to a

finite value. Thus necessarily a < b, as claimed.

For the second claim, note that it is enough to prove thatif1 < d < ¢, then ¢” < d".
LetA :=1+ L%J, ¢ := A and ¢ := 0. Then one has In(c) < AIn(d), i.e. ¢ < d*, whence
¢ < d* 1. Itfollows that

(%)r < (@Y <A@y
foranyr > 0,and thusc” < A(d*~1)"d" = A(d")* forallr > 0. We conclude thatc” < d". O
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(ii) Foranya > 0,b > 1,r* < b" and r* + b". The first part is proved exactly in the same
spirit as the previous example. On the other hand, if we suppose that r* ~ b", then we
find A, u > 0and ¢ > 0 so that

b" < Aur +c¢)" +c¢

for any r > 0. Equivalently, ’j—; < My + £)" + 5 forany r > 0. Letting r — oo in this
inequality provides a contradicting since the left hand side tends to co while the right
hand side tends to a finite value. Hence r* + b’.

Observe now that, in a uniformly locally finite pseudo-metric space (D, d), ifx, y € D
andr > 0, then

Ba(y,r) € Ba(x,r +d(x,y)), Ba(x,r) C Ba(y,r +d(x,y))
by the triangle inequality, so that

Bh(r) = [Balx, 1)l < [Ba(y, r +d(x, )| = pj(r +d(x, 1))

for any r > 0, and also ﬁyD(r) < Bp(r +d(x,y)) for any r > 0. Hence B}, ~ ﬁyD, which
motivates the next definition.

Definition 3.22. Let D be a uniformly locally finite pseudo-metric space. Let x € D. The
growth type of D is the class of the function g7, and is denoted fp.

If Bp(r) ~ r¥ for some d € N, we say that D has polynomial growth of degree d, and we
say it has exponential growth if fp(r) ~ e”. It has subexponential growthif fp(r) < e” and
Bp(r) » e, and ithas superpolynomial growthif, foranyd € N, r* < fp(r)and r? + Bp(r).
Lastly, D has intermediate growth if it has superpolynomial growth and subexponential
growth.

Since the function g7, heavily depends on the metric, we will sometimes write ,BZ‘D 0
to insist on the metric we choose on D.

We now give several examples of growth functions, mostly among finitely generated
groups.

Example 3.23. (i) Let G = Z equipped with the metric ds where S = {—1, 1}. Then, if
n>1,By(0,n)={-n,-n+1,...,n—1,n},sothat fzs(n) = 2n + 1foranyn > 1.

(ii) Let (Z,ds) be asin (i), and let f: R, — R4, f(x) = In(1 + In(1 + x)). DefineonZ a
metric df by
dr(x,x') == f(ds(x,x")), x,x" € Z.

Then (Z, dy) is uniformly locally finite, since translations are isometries. Since we have
n€By(0,r) = f(ln)) sre=1+n|<e’ ' = |n|<e” -1
for any r > 0, it follows that ﬁ?z df)(r) =2|e¢ | - 1foranyr > 0.

(iii) Let G = Z? equipped with the genereating set S = {(1,0), (0,1),(-1,0), (0,-1)}. For
n > 0, the ball of radius n centered at (0, 0) is

{G,)) €Z% - |i| +1jl < n}
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the diagonal square containing the vertices (0, r), (0, —r), (r,0), (-r,0),0 < r < n. Thus

n
Bazs(n) =1+ > 4r=2n+2n +1
r=1

foralln > 0.

(iv) If G = Z? israther endowed with S’ = SU{(1, 1), (-1, -1), (1,-1), (-1, 1)}, then for any
n > 0, the ball of radius n centered at (0, 0) is now

{G,)ez?: il <nljl <n} ={-n, ..., n}*

so that B(z2 ¢(n) = (21 + 1) = 4n? + 4n + 1 forany n > 0.

(v) Let G = Fs equipped with S = {a,b,a"!,b~'}. For all n > 1, the ball of radius n
centered at the identity element has cardinality

n—1

Birns)(n)=1+4 8/ =2.3"—1.
=0

Proposition 3.24. Let D, E be non-empty uniformly locally finite pseudo-metric spaces,
andletx € D andy € E.

() Ifc > 0 andL is ac—metric lattice containing x, then 7 ~ B}, and . = fp.

(ii) Ifthereisc,c” > 0 and aninjectivemap f: D — E so that

C”dD(x,, xu) < dE(f(x,),f(x”)) < CdD(X/, x//)

foranyx’,x" € D, then 7, < ﬁg and fp < Be. If moreover f(D) is cobounded in E,
then 7, ~ ﬁg and fp = BE.

(iii) IfD, E are quasi-isometric, then 7, ~ ﬁ% and fp = BE.

Proof. (i) Letc, ¢’ > OsothatLisac—metriclattice and so thatany point of X isatdistance
at most ¢’ from a point of L. As L. ¢ D, we already have 7 < f7,.

Conversely, letr > 0 and z € Bp(x, r). Pick some x” € L so thatd(z, x’) < ¢/, and thus
one has
dx,x") <d(x,z)+d(z,x")<r+¢

sothat x” € Br(x,r + ¢’)and z € Bp(x’, ¢’). Hence

Bp(x,r) C U Bp(x’, c’)

x’€BL(x,r+c’)
and taking cardinals, it follows that 7,(r) < AB7(r +c¢’) with A := sup |Bp(x, ¢’)| < co. We

x’eD
conclude that 8}, < 7, as claimed.
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(i) Let r > 0 and let ¢’ := dg(f(x), y). The restriction of f to Bp(x, r) is an injection into
Be(f(x), cr), which is contained in Bg(y, cr + ¢’). Thus

Bp(r) = |Bp(x,r)| < |Be(y,cr+c')| = ﬁ%(cr +c’)
which implies g7, < ﬁz. Assume moreover that f(D) is cobounded, and set

s :=sup de(f(D),y’) < oo.
y’'€E

Forany y’ € Be(y, r), thereis x” € D with dg(f(x’), y’) < s, and in this case
de(f(x), f(x")) < de(f(x), y) +de(y, y') +de(y’, f(xX) <7+ "+

hence
Be(y,r) C Be(f(x),r+¢') C g Be(f(x'),s)
x’eD, dp(f(x),f(x"))<r+c’+s
c U Be(f(x'), 5).

x’eD, dE(x,x’)S%(r+c’+s)
Taking cardinals, it follows that ,Bg(r) < yﬁxD(%(r + ¢’ +s)), where

w = sup |Be(y’, s)| < 0.
y'€E

We conclude that ,B% < B}, and finally that g, ~ ﬁ%.

(iii) Suppose that f: D — E is a quasi-isometry. In particular, f is a quasi-isometric
embedding, so Proposition 3.16(iii) provides k > 0 so that f,: L — f (L) is bilipschitz
for any k—metriclattice L in X. Choose such a metric lattice L containing x, using Propo-
sition 3.15. Then, by (i), it follows that 87, ~ 7. Now, notice that f; is also injective, since
it is bilipschitz and since L is actually a metric space. Thus, we are in position to apply
(ii) and get 7 ~ ,Bg. We conclude that g7, ~ ﬁ%. m]

Thus, among uniformlylocally finite pseudo-metric spaces, the growth type is a quasi-
isometry invariant. This has already important consequences in the discrete setting.

Corollary 3.25. Let X, Y be two graphs of bounded degree. If X andY are quasi-isometric,
then they have the same growth type.

Proof. A graph ofbounded degree is a uniformlylocally finite pseudo-metric space when
endowed with the combinatorial metric (cf. Example 3.18(i)). Hence Proposition 3.24 (iii)
applies. O

Since a finitely generated is quasi-isometric to any of its Cayley graph, we get the fol-
lowing statements.

Corollary 3.26. Let G be a finitely generated group, and S, S’ be finite symmetric generat-
ing sets for G.
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(i) We havef,s) ~ B(G,s) S0 that the growth type of G is independent of the choice of
generating sets.

(ii) The group G grows at most exponentially fast.

Proof. (i) From Lemma 2.36, there is a bilipschitz equivalence (G, ds) — (G, dg), so that
Proposition 3.24(iii) gives the conclusion.

(ii) By Example 3.6(ii), (G, ds) is quasi-isometric to Cay(G, S). Since this graph is of bounded
degree, it grows at most exponentially fast, so that the same holds for G. m]

Putting together Corollary 3.7, Corollary 3.9, Corollary 3.11 and Proposition 3.24, we
also deduce the following from our previous results.

Corollary 3.27. (i) IfG is a finitely generated group, and H < G has finite index, then
G and H have the same growth type.

(ii) IfG is finitely generated and H is weakly commensurable to G, then G and H have
the same growth.

(iii) IfN < G is finite, then G and G/N have the same growth type.

For instance, SLy(Z), PSLo(Z), Zo * Zo * Z9 * Zs all have exponential growth, since all are
quasi-isometric to F2. On the other hand, D, has polynomial growth of degree 1 since it
is quasi-isometric to Z.

Let us also mention the following.

Proposition 3.28. LetG = (S), H = (T) be two finitely generated groups.
Then G x H is finitely generated, and fxn ~ B(G,s)B(H,T)-

Proof. The fact that G x H is finitely generated is a consequence of Proposition 1.41, and
the proof of the latter shows that

U:={(s,eg):s € S}U{(eg,t):t €T}

is a finite generating set for G X H. As the growth type of G X H is independent of the
choice of the generating set, we now show that xm ) ~ B(G,s)BH,T)-

Firstof all, if ¢ € By (eg, n) andif h € Bqy,(eqy, n), then (g, h) € Bq,(egxH, 2n), and thus
B(c,s)(m)B,T)(n) = |Bas(eg, n)||Ba;(eq, n)|
< |Bay (ecxH, 2n)|
= B(GxH,u)(2n)
< 2B(GxH,u)(2n)

foranyn > 1. Hence BG,s)8(H,1) < B(GxH,u)- Conversely,ifn > 1and(g, h) € Ba,(ecxH, 1),
thereisp,r € Nwithp+r < nand group elementsxy, ..., x, € SUS™L,yy, ..., y, e TUT!
so that

(g, 1) =(x1,en)...(xp, eq)ec, y1)...(ec, yr) = (X1...Xp, Y1 ... V7).
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Hence Bq, (ecxH, 1) C Bqs(ec, n) X Bqa,(er, n), and it follows that

Bexu,u) (1) < Bc,s)(m)Bw,1)(1n)

forany n > 1. We conclude that Scxy,u) < P(,s)BH,) and finally that Bgum,u) ~
B(G,5)BT)- O

Therefore, as Bz ~ n (cf. Example 3.23(i)), it follows that Z has polynomial growth of
degree d, for any d > 1. This implies the following.

Corollary 3.29. Any finitely generated abelian group has polynomial growth.

Proof. Such a group G splits as a product Z? x F, where d € N and F is a finite group (see
e.g. [3, corollary 1.30]). As the growth function of F is constant for n large enough, we
conclude that g ~ Bz« ~ n9, as claimed. O

These results already allow us to distinguish euclidean spaces up to quasi-isometry.

Corollary 3.30. Foranyd # d’ € N, Z% is not quasi-isometric toZ% . As a consequence, R¢
is not quasi-isometric toR® .

Proof. () Ifd # d’ and Z¢ ~q; Z%, then n? ~ n?, sod = d’ by Example 3.21(i). This
contradiction shows that Z¢ +g ; Z%. In particular, asR? (resp. R?) is quasi-isometric to
Z“ (resp. Z%), we deduce also R? +o ; R?. O

So far, we defined growth for uniformly locally finite pseudo-metric spaces, and in
this class, it is a quasi-isometry invariant. It therefore makes sense to define growth for
pseudo-metric spaces quasi-isometric to uniformly locally finite pseudo-metric spaces,
without requiring them to be uniformly locally finite from the beginning. This property
is related to coarse properness and uniform coarse properness, that we define now.

Definition 3.31. A pseudo-metric space (X, dx) is coarsely proper if there exists Ry > 0
so that any bounded subset of X can be covered by finitely many balls of radius R.

Proposition 3.32. Let (X, dx) be a pseudo-metric space. The following claims are equiva-
lent.

(i) Thespace(X,dx) is coarsely proper.

(ii) The space(X,dx) is coarsely equivalent to a locally finite discrete metric space.
(iii) The space (X, dx) is quasi-isometric to a locally finite discrete metric space.
(iv) Thespace (X, dx) contains a locally finite metric lattice.

(v) Foranyc > 0, the space (X, dx) contains a locally finite c—metric lattice.

(vi) There existscy > 0 so that, for anyc > cy, every c—meitric lattice in X is locally finite.
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If moreover X is large-scale geodesic, X satisfies properties (i)-(vi) if and only if (vii) X is
quasi-isometric to a locally finite connected graph.

Proof. Note to start that (v) = (iv) is obvious, that (iv) = (iii) follows from Remark 3.14,
and that (iii) = (ii) is also clear. We now prove that (i) & (iii).

(i) = (iii) : Suppose that X is coarsely proper, and let Ry > 0 be given by Definition 3.31.
Let L be a 3Rp—metric lattice in X, which exists by Proposition 3.15. By Remark 3.14, X is
quasi-isometricto L, so itis enough to show that L is locally finite. Let F ¢ L be abounded
subset. Then F is included in the union of finitely many balls B, . . ., B,, of radius Ry, and
since the distance between two points of L is at least 3R, the ball B; can contain at most
one pointof F, forany 1 < i < n. Hence F is finite, and thus balls of L are finite.

(iii) = (i) : Let f: (X, dx) — (Y, dy) be a quasi-isometry, with Y alocally finite discrete
metric space. Denote a > 0, b > 0 the parameters of f. Observe first that the pre-image
under f of any singleton in Y has finite diameter: if y € Y and x, x’ € f~1({y}), then

dx(x,x") < aldy(f(x), f(x')) +b) = a(dy(y, y) + b) = ab.
Let then Ry := ab > 0, and let B ¢ X be bounded. Then f(B) c Y is bounded, as
dy(f(x), f(x")) < adx(x,x") +b < adiam(B) + b

for any x, x” € B. As Y is locally finite, we deduce that f(B) is finite, and we enumerate
fB)={f(x1),..., f(xy)}forxy,..., x, € B. It follows that

Bc (B = F A c | Bay(xi, Ro)
i=1 i=1

where thelastinclusionisjustified by our previous observation. Hence (X, dx) is coarsely
proper.

(ii) = (iv) : Assume there exists a locally finite discrete metric space (D, d) and a metric
coarse equivalence f: D — X. By Proposition 3.16(i), we find a metric lattice L € D so
that

dx(F(0), f(£) 2 1

forany ¢ # ¢’ € L. We denote d the restriction ofd to L. Then f(L) c X is a metric lattice
in X, so it remains to check it is locally finite. Let B ¢ f(L) be bounded. Then f~1(B)
is bounded as f is coarsely expansive. Since (L, dy) is proper, f~1(B) N L is finite. Since
fir: L — X isinjective, it follows that B is finite. Thus f(L) is alocally finite metric lattice
in X, which shows (iv).

(iv) = (v) : Let ¢ > 0. From Proposition 3.15, every metric lattice contains a c—metric
lattice, whence the claim.

So far, we have proved the equivalences of properties (i)- (v). Note that (vi) = (iv) follows
once again from Proposition 3.15.

(iv) = (vi) : Let D c X be alocally finite metric lattice. It is cobounded, solet R > 0 be so
that any point of X is at distance at most R from a pointof D. Letcg := 2R + 1, and fix E a
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c—metric lattice for ¢ > ¢g. Foranye € E, choose an elementd, € D so thatdx(e,d.) < R,
and define f: E — D setting f(e) := d.. This map is injective, since ife # ¢’ € E are so
that f(e) = f(¢’), then

2R+1=cg<c<dx(ee) <dx(e,d.)+dx(d., e’) <2R

a contradiction. Moreover, if r > 0 and e € E, the image of By, (e, r) under f is contained
in B4, (f(e), 2R). The latter being finite by hypothesis on D, we conclude that B, (e, r) is
finite as well. Thus E is locally finite.

To conclude, we assume moreover that X is large-scale geodesic, and we show that
(iii) & (vii). The implication (vii) = (iii) is immediate, so we turn to the converse.

(iii) = (vii) : Assume that X is c—large-scale geodesic, and by (iii) without restriction we
assume that X is a locally finite discrete metric space. Consider the graph X’ for which
vertices are elements of X and two such vertices are linked by an edge if they are at dis-
tanceless than c in X. Endow X’ with the natural combinatorial metricd’. As X is c—large-
scale geodesic, X’ is connected, and the map

IdX : (X/ dX) — (X,/ d,)
is a quasi-isometry. As (X, dx) is locally finite, so is (X', d’), and (vii) is proved. O
In particular, we deduce that coarse properness is a coarse geometric invariant.

Corollary 3.33. For pseudo-metric spaces, coarse properness is invariant under metric
coarse equivalence.

Proof. This follows directly from (ii) in the previous proposition. O

We also get examples of coarsely proper metric spaces.

Corollary 3.34. Proper metric spaces are coarsely proper.

Proof. Let (X,dx) be a proper metric space. Choose a metric lattice L ¢ X such that
dx({,t’) > 2forany ¢ # ¢’ € L. By Proposition 3.32(iv), it is enough to prove that L is
locally finite to deduce that X is coarsely proper.

Thuslet R > 0, {y € L, and consider the ball B := B;({y, R) in L. If B is infinite, then
(Bay(€,1) = {x € X : dx(x,f) < 1})sep is an infinite collection of pairwise disjoint non-
empty balls of radius 1 in X, all contained in By, (¢, R + 1), which is relatively compact as
X is proper. This contradiction proves that balls of L are finite, as was to be shown. O

Let us now turn to the corresponding uniform notion.

Definition 3.35. A pseudo-metric space (X, dx) is uniformly coarsely proper if there ex-
ists Ry > 0 so that, for any R > 0, there exists N € N so that any ball of radius R can be
covered by N balls of radius R.
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Clearly, any uniformly coarsely proper pseudo-metric space is coarsely proper.

Here is the natural analog of Proposition 3.32 and Corollary 3.33 for uniform coarse
properness.

Proposition 3.36. Let (X, dx) be a pseudo-metric space. The following claims are equiva-
lent.

(i) Thespace(X,dx) is uniformly coarsely proper.

(ii) The space (X, dx) is coarsely equivalent to a uniformly locally finite discrete metric
space.

(iii) Thespace(X,dx) is quasi-isometric to a uniformly locally finite discrete metric space.
(iv) Thespace (X, dx) contains a uniformly locally finite metric lattice.
(v) Foranyc > 0, the space (X, dx) contains a uniformly locally finite c—metric lattice.

(vi) There exists co > 0 so that, for any c > c, every c—metric lattice in X is uniformly
locally finite.

If moreover X is large-scale geodesic, X satisfies properties (i)-(vi) if and only if (vii) X is
quasi-isometric to a connected graph of bounded degree.

Corollary 3.37. For pseudo-metric spaces, uniform coarse properness is invariant under
metric coarse equivalence.

Hence we can define the growth type of a uniformly coarsely proper pseudo-metric
space as the growth type of one of its uniformly locally finite metric lattices. The next
statement shows this definition does not depend on the choice of the lattice, nor of the
basepoint.

Proposition 3.38. Let X be a non-empty uniformly coarsely proper pseudo-metric space.
LetLy, L1 be metric lattices in X with xo € Ly, x1 € L1. Then one has

X0 o pX1
Pro = Pr,-

Proof. By point (vi) of Proposition 3.36, we may assume that Ly, L; are uniformly locally
finite. Let ¢o: Lo — X, t1: L1 — X be the natural inclusions. These are quasi-isometries
(Remark 3.14), and letting p;: X — L; be a quasi-inverse of ¢, the composition p; o ¢
is a quasi-isometry from Lj to L;. We thus may apply Proposition 3.24(iii) to get

X0 ~ pX1
Pr, = B,
as claimed. m|

Definition 3.39. Let X be a uniformly coarsely proper pseudo-metric space. The growth
type of X, denoted B, is the class of the function g, where L a uniformly locally finite
metric lattice in X and x € L.
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Example 3.40. Forany d > 1, R? contains Z“ as a uniformly locally finite metric lattice,
and the latter has polynomial growth, so that R? has polynomial growth of degree d.

The following is also a direct consequence of Proposition 3.36, and generalises Corol-
lory 3.26(ii).

Corollary 3.41. Let X be a uniformly coarsely proper and large-scale geodesic pseudo-
metric space. Then X grows at most exponentially fast.

Proof. From the assumptions and point (vii) of Proposition 3.36, we know that X is quasi-
isometric to a connected graph of bounded degree. Such a graph has at most exponential
growth, whence the conclusion. O

In this result, the assumption on the large-scale geodesicity of X cannot be dropped,
as shown by Example 3.23(ii).

Since now growth is defined for a wider class of pseudo-metric spaces, it also makes
sense to extend Proposition 3.24 to those spaces.

Proposition 3.42. Let X, Y be two pseudo-metric spaces. SupposeY is uniformly coarsely
proper.

() If thereis a coarse embedding f: X — Y, then X is uniformly coarsely proper. In
particular, the growth type of X is well-defined.

(ii) Iff is moreover large-scale Lipschitz, then fx < By.
(iii) Iff is moreover a quasi-isometry, then fx = By.

Proof. (i) By hypothesis, we have a subspace Yy C Y and a surjective metric coarse equiv-
alence f: X — Yp. Let g: Yo — X be a metric coarse equivalence so that f and g are
inverses of each other in the metric coarse category. Let ¢ > 0 be so that

dx(g(y), gy)) =1

forally, y’ € Yowithdy(y,y’) > c. Ifnow My is ac—metriclatticein Yy and M is a c—metric
lattice in Y containing My, then M is uniformlylocally finite since Y is uniformly coarsely
proper, and thus so is My. Hence g(M)) is a uniformly locally finite metric lattice in X,
which implies that X is uniformly coarsely proper.

Points (ii) and (iii) follow from the corresponding points in Proposition 3.24 after pass-
ing to uniformly locally finite metric lattices in X and Y. O

As we proved, growth can be used to rule out the existence of a quasi-isometry be-
tween two uniformly coarsely proper pseudo-metric spaces.

Additionally, if these pseudo-metric spaces are large-scale geodesic, it can also rule
out the existence of coarse embeddings.
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Corollary 3.43. Let X,Y be pseudo-metric spaces. Suppose that X is large-scale geodesic
and thatY is uniformly coarsely proper.

If there exists a coarse embedding from X toY, then fx < fy.

Proof. Observe first that X is also uniformly coarsely proper by (i) of the previous result.
SetYp := f(X). Let c > 0 be so that

dy(f(x), f(x)) 2 1

for any x, x’ € X with dx(x, x’) > c. By Proposition 2.25(i), f is in fact large-scale Lips-
chitz, i.e. thereis c; > 0, ¢/, > 0so that

dy(f(x), f(x)) < cxdx(x,x") + ¢

for any x,x” € X. Now, fix xg € X and let L be a c—metric lattice in X containing x.
Then M, := f(L) is a 1-metric lattice in Y, so that there exists a 1-metric lattice M in Y
containing M. Observe that f|;, is injective and that

f(Br(xo,7)) € Bm(f(x0), c47 + )

for any r > 0. As f; is injective, it follows that g,°(r) < ﬁﬁxO)(chr +c}) forany r > 0,

o _ of(x0)

whence ;° < §,, . Hence fx < By. m

Example 3.44. (i) As F5 has exponential growth, it follows that any finitely generated con-
taining a subgroup isomorphic to F, also has exponential growth. In particular, F; has
exponential growth for any d > 1.

(ii) Forany d > 1, Z% has polynomial growth of degree d while F,; has exponential growth.
Asn? + e by Example 3.21(ii), it follows that 7% is not quasi-isometric to F.

(iii) It follows from Corollary 3.43 that there does not exist any coarse embedding of F;
into a euclidean space R%, d > 1. More generally, a regular tree of degree at least 3 does
not coarsely embed into a euclidean space.

Let us close this part by presenting another way of defining growth for c—compact
locally compact groups, through their Haar measures.

Definition 3.45. Let G be a co—compact locally compact group, 4 a Haar measure on G,
and d a measurable adapted pseudo-metric on G. For r > 0, we define the volume of the
ball B;(e, r) as

Vol(By(e, 1)) := / du
By(e,r)
and the growth function of G with respect to 4 and u as
0G,4,u(r) := Vol(B4(e, ), r 2 0.

The growth type of G is then the equivalence class of vg 4.
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Observe that the growth type of G is independent of the choice of 4, since the latter is
unique up to multiplicative constants.

Moreover, observe that if 4’ is another adapted pseudo-metric on G so that (G, d),
(G, d’) are quasi-isometric, then vg 4,, = vg, 4, SO that the growth type of G is also inde-
pendent of the choice of d.

We now prove this definition of growth is equivalent to the one above.

Proposition 3.46. Let G be a o—compact locally compact group, and letd, u, vg 4, be as
above.

(i) The pseudo-metric space(G, d) is uniformly coarsely proper. In particular, its growth
function B¢ is well-defined.

(ii) The functions g andvg 4, are equivalent.

Proof. (i) Lets > 0 belarge enough so that B;(e, s) is aneighborhood of e in G. Let ¢ > 2s,
and using Proposition 3.15, choose a c—metric lattice L in (G, d) containing e. We now
show (L, d) is uniformly locally finite to conclude the proof of (i).

Letr > 0Oand ¢ € L. Since (¢'C)per : dt,¢)<r} is @ collection of pairwise disjoint balls
all contained in Bg(¢, r + s), it follows that

BL(r)vG,a,u(s) < 0G,au(r +5) (4)
and thus
0G,d,u(r +5)
Z)G,d,y(s)
for any r > 0. Thus L is uniformly locally finite, and this proves (i).

(ii) Point (4) above already shows ﬁ’i < vG,4,.- On the other hand, if R > sup d(g,L), then
g€G

sup ﬁi(r) <
(el

the balls /B (e, 1) cover G. It follows that

Bg(e,r) C U (B

{eLNBg(e,r+R)
forallr > 0, whence vg 4,,(r) < B} (r + R)vg,q,u(R) forall ¥ > 0. Thus vg 4, < ﬂi, and (ii)
is proved. O
3.4 Growth of nilpotent groups

In this part, we generalise Corollary 3.29 and we prove that any finitely generated
nilpotent group has polynomial growth.

Theorem 3.47. Any finitely generated nilpotent group has polynomial growth.
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Proof. Let thus G = (S), S = {si1,...,sm} be a finitely generated nilpotent group, of
nilpotency class ¢ > 1. We prove the theorem by induction on ¢ > 1. The casec = 1
corresponds to a finitely generated abelian group, and is thus handled by Corollary 3.29.

Assume now that G has nilpotency class ¢ = 2. This means that[[G, G], G] = {ec}, and
in particular [G, G] € Z(G), i.e. [G, G]is abelian. As it is also finitely generated by Propo-
sition (from Chapter 1), we deduce from the base case that it has polynomial growth, say
of degree k > 1. Now consider g € G oflength n. Since G is generated by S, g is a product
of elements of S, and we want to regroup powers of generators that are present in our
original word and put them in a prescribed order. If s, s’ € S are two generators so that
ss’ appears in g, then we write it as

ss’ =s'ss1s"lss’ =[5, 5]s’s
and since [s’, s] € Z(G), it commutes with all generators appearing before ss’ in the writ-
ing of g, so that we can move [s’, s] at the left most end of g. After this operation, the
product ss’ in g has been replaced by s’s. By repeating this operation, our word g can be
written as
g = Cs'f1 ... ghm

where ki, ..., k,, € Nand where C is a product of at most n? commutators of generators.
Then

ﬁ(G,S)(n) < n2k+m

whence G has polynomial growth.

We handle the general case based on the same idea. Let G = (s, ..., sy) be finitely
generated and nilpotent of nilpotency class ¢ > 1. Then [G, G] is nilpotent of nilpotency
class ¢ — 1, and is finitely generated by Proposition 1.45. Thus, by the induction hypoth-
esis, it has polynomial growth, say of degree k. If ¢ has length n and ss’ appears in the
writing of g as a product of generators, we replace ss’ by [s’, s]s’s. Now we must move
[s”,s] at the left most end of g. If s” is a generator so that s”[s’, s] appears in g, then we

write
s"[s",s] =[[s",s],8"][s’, s]s”

and [[s’,s],s”] € [[G, G], G], which is finitely generated of nilpotency class ¢ — 2. In order
to move all commutators that we get as we exchange generators in the initial word to the
left most end of the word, we will have to perform at most 3 exchanges of a commutator
with a generator, and at each step we will get a double commutator that we will also have
to move at the left most end of the word. Eventually this process will stop as c is finite.
We conclude that there is C € N so that

,B(G,S)(n) < nm+Ck
and G has polynomial growth. O

For G a nilpotent group, the proof of the previous result does not give a precise for-
mula computing the degree of polynomial growth, but it turns out such a formula actu-
ally exists. It is sometimes called the Bass-Guivarch formula [3, theorem 7.29].
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Theorem 3.48. LetG beanilpotent group. Foranyi > 1, letr; denote the torsion-free rank
of the quotient y;(G)/vi+1(G).
Then G has polynomial growth of degreed, whered := } ;- ir;.

For instance, applying this formula with the Heisenberg group H(Z) which is nilpo-
tent of class 2 shows that H(Z) has polynomial growth of degree 4. In particular, H(Z) and
Z3 are not quasi-isometric, and H(Z) does not coarsely embed into Z3.

Amazingly, the converse of Theorem 3.47 is also true, up to a subgroup of finite index.
This is an outstanding result due to Gromov. A proof is far beyond the scope of this text,
and can be found for instance in [3, theorem 12.1] or [6].

Theorem 3.49. If G is a finitely generated group having polynomial growth, then G is vir-
tually nilpotent.

Here, recall that if # is a group property, a group is called virtually P if G contains a
finite index subgroup H having property 7.

3.5 Milnor’s theorem

We saw above that on the one hand, all nilpotent groups have polynomial growth,
and on the other hand all examples of exponential growth groups encountered so far
contains non-abelian free subgroups. In particular, these examples are very far from be-
ing solvable. The goal of this section is to exhibit some examples of solvable groups (thus
without any non-abelian free subgroups) that have exponential growth. This is accom-
plished through the following major result, due to John Milnor.

Theorem 3.50. A finitely generated solvable group of subexponential growth is polycyclic.

Proof. We claim that it is enough to prove that [G, G] is finitely generated. Indeed, if
this condition holds, then [G, G] is a finitely generated solvable group of subexponen-
tial growth and, by induction on the derived length, it is polycyclic. On the other hand,
G/[G, G] is finitely generated and abelian, thus polycyclic as well. Hence G is polycyclic
as an extension of two polycyclic groups (Proposition 1.47).

Let us then show that, under the assumptions of the theorem, [G, G] is finitely gener-
ated. Since G/[G, G] is finitely generated and abelian, we may find a sequence

G>Hs;>--->H; > Hy=|[G,G]

with [G : Hs] < oo and H;/H;_; is infinite cyclic for any i = 1,...,s. Note that H; is
finitely generated by Corollary 3.7. Thus we can conclude that [G, G] is finitely generated
by applying iteratively the following claim.

Claim. Let G be a finitely generated group of subexponential growth and suppose that H
is a normal subgroup of G so that G/H = Z. Then H is finitely generated.
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Proof of the claim. Leta € Gbesothat G/H = (aH), and let X c G be a finite symmetric
generating set of G. Without restrictions, we assume thata € X. For any x € X, there
isn € Zand h € H so that x = a"h. Up to replacing any element x # a*! by the corre-
sponding i, we may assume that X = {a*!, h#!, ... hf'} where h; € Hforalli=1,...,¢.
Let H™) c H denote the subgroup generated by the elements a/ hiila‘f withi =1,...,¢
andj =0,...,m. Note that HY ¢ HD c H® c ... andlet H* := |JS_, H"™). We prove
that H* = H™ for some m > 1. If not, for any m > 0, we can find j,, € {1,...¢} so that
ky = amhjma‘”’ e HM) \ H™=1) Now, for m € N, consider the products

€01.€1 Em
KRSk

where ¢, ..., e, € {0,1}. There are 2"*! words of this type which represent disctinct
group elements of length less than 3m + 1 with respect to X. Indeed the maximal length
is attained when ¢; = 1 for all i so that the corresponding element is

ko...ky = ]’l]'oahjlllh]'2 e ﬂ]’l]'mﬂ_m
This implies that B¢ x)(3m + 1) > 2"*1, contradicting the fact that G has subexponential

growth. Thus H* = H) for some m’ > 1. In the same way, exchanging the roles of a
and a~! we can show that the subgroup H™ := [J%_, H=™), where H=™ is the subgroup
of G generated by the elements a~/h#'a/ withi = 1,2,...,fand j = 0,...,m, is finitely
generated, say H~ = H"™"") for some m” > 1. It follows that

H=< O H(j)>=< Lnj H(j)>

j==c0 j=—m”
is finitely generated, and the claim is proved. O
As explained above, this concludes the proof of the theorem. O

Example 3.51. The lamplighter group Z,Z is finitely generated (Proposition 1.43), solv-
able and not polycyclic (cf. Example 1.46). Thus, by Milnor’s theorem, it has exponential
growth. More generally, if A is finitely generated, solvable and that B is infinite finitely
generated and solvable, then A ¢ B has exponential growth.

Another important result in growth theory, due to Wolf, is the following. A proof is
presented for instance in [3, theorem 7.37].

Theorem 3.52. A polycyclic group with subexponential growth is virtually nilpotent.

Combining this with Milnor’s theorem and Theorem 3.47, we deduce that intermedi-
ate growth cannot be observed among solvable groups.

Theorem 3.53. A finitely generated solvable group either has exponential or polynomial
growth. In the latter case, it is virtually nilpotent.
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4. Simple connectedness in the metric coarse category

In this part, we focus on another property that turns out to be invariant under metric
coarse equivalence. The idea to keep in mind is that this construction is a coarse analog
of the construction of the fundamental group of a topological space.

4.1 Coarsely simply connected pseudo-metric spaces

Definition 4.1. Let (X, dx) be a pseudo-metric space and let ¢ > 0. Two c—paths & =
(x0, -+, %m), n = (Yo,-..,yn) in X are c—elementarily homotopic if xo = yo, x» = y» and
if either

n=m+1 and (yo,...,Yn) = (X0, -, Xi, Vit1, Xis1, -, Xm)
or

m=n+1 and (xo,...,%Xn) = Wo,---, Vi, Xi+1, Yit1,---, Ym)

for some index i.

Additionally, we say that two c—paths &, ) are c—homotopic if there exists a sequence
o = &,&1,...,& = nof c—paths so that &;_1, {; are c—elementarily homotopic for any
j=1,...,¢

For xg € X, ac—loopin X at x( is a c—path that starts and ends at x.

Here is a first example of homotopic paths.

Lemma 4.2. Let (X, dx) be a pseudo-metric space, ¢ > 0, and let & = (xq,...,x,), n =
(Yo, .., yn)be two c—paths in X so that xg = yo, x,, = y,.

Ifdx(x;,yi) < cforanyi =1,...,n, then ¢ and n are 2c—homotopoic.

Proof. The idea here is to start from the sequence & and progressively introduce the y;’s
and delete the x;’s, alternating each of these moves. Explicitly, we set &, := &, and then

&1 = (X0, Y1, X1,...,Xn)
52 = (x()/ y1/x2/ LA /xl’l)
53 = (x()/ Yi,Y2,%2,... /xn)

and so on until reaching &2,-2 := (x0 = Yo, Y1,-..,Yn) = 1. The sequence &y, ..., Ean—2
is then a sequence of 2c—paths so that &;_1, &; are 2c—elementarily homotopic for any
j=1,...,2n —2. Thus £ and ) are 2c—homotopic. O

Definition 4.3. Let X be a pseudo-metric space and xy € X. If ¢” > ¢’ > 0, we say that
X has the Property SC(c’, ¢”) if any ¢’—loop in X at x( is ¢”—homotopic to the trivial loop

(x0).

Remark 4.4. For constantsc” > ¢’ > ¢ > 0, ac—coarsely connected pseudo-metric space
X has Property SC(¢’, ¢”’) for one choice of base point in X if and only if it has Property
SC(c’, ¢”) for any other choice of base point.
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Thus, when irrelevant, we do not specify the choice of the base point.
The following result will be useful later.

Lemma 4.5. Letc” > ¢’ > ¢ > 0, and suppose X is c—geodesic. Let xy € X.
If X has Property SC(c¢’, ¢”), then it also has Property SC(c”, ¢”).

Proof. Let & = (xg,x1,...,%x, = x0) be ac”—loop at xy in X. Using c—geodesicity, we can
insert new points in between those of £ in order to geta ¢’~loop n = (xo, y1,-- -, Ym, X0)
based at x in X that is ¢”—homotopic to £. As X has SC(c’, ¢”), there is a ¢”—homotopy
from 7 to (xp), and thus ¢ is also ¢”—homotopic to (xp). Hence X has SC(c”, ¢”). O

We now turn to coarse simple connectedness.

Definition 4.6. Let (X, dx) be a pseudo-metric space, and let ¢ > 0. We say that X is
c—coarsely simply connected if it is c—coarsely connected and if, for any ¢’ > ¢, there
exists ¢’/ > ¢’ so that X has Property SC(c’, ¢”).

We say that X is coarsely simply connected if it is c—coarsely simply connected for
some ¢ > 0.

Remark 4.7. If C > ¢ > 0 and if X is c—coarsely connected, then X is c—coarsely simply
connected if and only if it is C—coarsely connected.

We can thus state the main result of this section.

Theorem 4.8. Coarse simple connectedness is invariant under metric coarse equiva-
lence.

Proof. Let f: (X,dx) — (Y, dy) be a metric coarse equivalence between two pseudo-

metric spaces, and let ¢ := supdy(y, f(X)) < co. Without restriction, we may assume
yeYy

that X is c—coarsely simply connected. In particular, X is c—coarsely connected, and
from Proposition 2.24, we know that Y is C—coarsely connected for some C > 0. Let
L := max(c, C). We claim that Y is L—coarsely simply connected. Let ¢’ > L. We are going
to prove there exists {” > ¢’ so that Y has Property SC(¢’, {”).

To that aim, fix yo € Yand & = (yo, y1,.--, Yn—-1,Yn = Yo) a{’—loop in Y based at y.
By Remark 4.4, up to changing the base point, we may assume that y is in the image of
f, and write yo = f(xo) for some xo € X. Foreach1 < i < n —1,letx; € X be so that
dy(yi, f(x;)) < ¢, and set x,, := xo. Then it follows that

dy (f(xi=1), f(xi)) < dy(f(xi-1), yi-1) + dy(yi-1, yi) + dy (yi, f(xi)) < 2c + € (5)
forany 1 <i < n. On the other hand, as f is coarsely expansive, there is s > 0 so that
dx(x,x") 2 s = dy(f(x), f(x")) = 2c + ' + 1.

We deduce from this implication and from (5) that dx(x;-1,x;) < sforany1l < i < n,
in other words (xg, x1,...,x,-1,X, = Xg) is a s—loop based at xy in X. In particular,
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Notes 4.1 Coarsely simply connected pseudo-metric spaces

(x0,X1,...,Xn-1, X, = Xo) is @ max(s, c)—loop based at x( in X, and X being c—coarsely
simply connected, we deduce there is a constant ¢” > s so that (xq, x1, ..., Xy-1, X, = Xq)
is ¢”—homotopic to (xp). Unraveling the definition, we find a sequence &g, &1, ..., &, of
¢”’—loops so that

&o = (x0,Xx1,...,X%n = x0), & = (x0)

and &;-1, &; are c”—elementarily homotopic for any 1 < j < r. Now, using that f is
coarsely Lipschitz, we find ¢; > 0 so that

dx(x,x') < ¢” = dy(f(x), f(x") < 4.

Forany 0 < j < r,setn; := f(&;). Combining the above inequality and the fact that &;
is a ¢”~loop at x¢ in X, we deduce that 1 is a {]~loop at yp in Y forall0 < j < r, and
moreover 1, = (f(xo)) = (yo) is the constant loop at yg. Also, forany 1 < j < r,7;-1,7; are
¢/’ —elementarily homotopic. We thus conclude that 1y and (yo) are ¢ ~homotopic.

To conclude, it remains to notice that

5 = (]/0, Yi,- o Yn-1,Yn = ]/0)/ Mo = (yOIf(xl)/ ce rf(xn—l)/f(xn) = yO)

are both max(¢’, {{)-loops at yo and that dy(y;, f(x;)) < cforany0 < i < n. Hence
Lemma 4.2 ensures that & and no are 2max(c, max(¢’, {'))-~homotopic. Thus we deduce
that £ and (o) are 2 max(c, max(¢’, #;'))—~homotopic, and setting ¢ := 2 max(c, max(¢’, ¢')),
it follows that Y has Property SC(¢’, £”). We conclude that Y is L—coarsely simply con-
nected, as claimed. O

Example 4.9. Since the one-point space is coarsely simply connected, it follows from
Example 2.13(i) and the previous result that any pseudo-metric space of finite diameter
is coarsely simply connected.

Here is a general result giving additional examples, such as the euclidean space R" for
n > 1 or the unit sphere S” for any n > 2.
Proposition 4.10. Let X be a geodesic metric space.

If X is simply connected, then X is coarsely simply connected.

Proof. Letc’ > 0,xp € X and & = (xg,x1,...,X, = xp) ac’—loop based at xy € X. Let

n
L:= Z d(xi-1, x,). As X is geodesic, we may pick a continuous loop ¢: [0, L] — X and

i=1
a sequence of real numbers (s;)p<i<y SO that0 =5y < sy <--- <5, = L, p(s;) = x; for any
i=0,...,nand

d(xi-1, xi) = d(p(si-1), @(si)) = [si-1 —si| < ¢’

foranyi = 0,...,n. Using now simple connectedness, there is a continuous homotopy
H:[0,L] x[0,1] — X so that

Vs € [0,L], H(s,0) = ¢(s), H(s,1) = xg

and
vVt €[0,1], H(0,t) = H(1,t) = xq.
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Since H is continuous on the compact space [0, L] X [0, 1], it is uniformly continuous, so
we may pick N > 1 so that
d(H(s,t),H(s',t")) < ¢’

whenever |s —s’| < ﬁ and |t—t'| < % Hence there is a subsequence (71,)o<n<m 0f (Si)o<i<n
sothat0 =7y <r; <---<r,=Land|r,—ry_1] < ﬁforl <h < M.Foranyj e {0,...,N},
we then set ]

J

¢j = (H(rh'ﬁ))oshsM

so that in particular £ and &, are ¢’-~homotopic. By Lemma 4.2, the loops &y and &y are
2¢’-~homotopic. Since &y = (x), we conclude that ¢ is ¢”—homotopic to (x() for some
c” > ¢/, concluding the proof. O

Proposition 4.11. Let (Y, dy) be a pseudo-metric space and Z C Y a coarse retract.
If Y is coarsely simply connected, then so is Z.

Proof. Letr: Y — Z be a coarse retraction. We may assume that there is zo € Z so that
r(zp) = zo. Let ® be an upper control for r, i.e.

dz(r(y), r(y") < P(dy(y, y"))

foranyy,y’ € Y. Letalso K > 0 be so thatdz(z,r(z)) < Kforall z € Z. Choose a constant
c > 0so that Y is c—coarsely connected and let ¢’ > c. Consider a ®(c¢’)—-loop 1 in Z at

zo. By hypothesis on Y, there is k” > ®(c’) and a sequence &y = 1,&1,..., & = (zo) of
k”—loopsinY at z so that {;_1, &; are k”—elementarily homotopicforj =1, ...,{. Then

r(&o) =1, 7(&1), ..., (&) = (20)

is asequence of ®(k”)—-loopsin Z at zy so that r(;-1), 7(&;) are ®(k”)—elementarily homo-
topicforj =1,...,¢. Hence Z has Property SC(®(c’), @(k”)), so that it is coarsely simply
connected. O

4.2 Combinatorial homotopy

If X is a simplicial complex, we denote X° ¢ X! c X? c ... the nested sequence
of its squeletons, and Xy its topological realisation, the Hausdorff topological space
obtained from X° by attaching cells of dimension 1,2, 3, .... Note that a graph is a one
dimensional simplicial complex.

Definition 4.12. Let X be a simplicial complex. A combinatorial path in X from a vertex
x € X" to avertex y € X is a sequence of oriented edges

&= ((x0,x1), -+, (Xm=1,Xm))

with x¢p = x and x,,, = y. Such a path is denoted & = (x¢, x1, ..., Xm)-
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If & = (xo,x1,...,Xn) is a combinatorial path, then its inverse path is the path &1 :=
(Xm, Xm-1,...,x0). The product of two combinatorial paths & = (xg,x1,...,xn), n =
(Yo, Y1, ---,Yn), denoted &n, is defined when x,, = yo and is given by

ET] = (xOlel e XmoY1,Y2, - -zyn)-

A combinatorial loop in X based at xy € X is a combinatorial path from x to x.
We can define homotopies between paths in simplicial complexes.

Definition 4.13. Let X be a simplicial complex and let x, y be two vertices of X. Two
combinatorial paths from x to y are elementarily graph homotopic if they are of the form

(x0/x11'-'1x1’l)/(x01x1/'"/xi/ulxi/"'/xn)

with xo = x, x, = y, where (x;, 1) is an oriented edge of X.

Additionally, two combinatorial paths &, " in X from x to y are graph homotopic if
there is a sequence & = ¢&,¢&1,...,& = & of combinatorial paths so that &1, &; are
graph elementarily homotopic foranyj € {1,...,¢}.

Also, we say that &, &’ are triangle homotopic if they are of the form
é = (X(),.. 'Ixi’l)lé/ = (X(),. e Xi U, X1, -/xn)

where {x;, u, xj+1} is a 2—simplex in X.

Lastly, two combinatorial paths &, &’ from x to y are combinatorially homotopic if
there exists a sequence &y = &,&y,...,& = & of combinatorial paths from x to y so
that &;_1, &; are either elementarily graph homotopic or triangle homotopic for any j €
{1,...,¢}.

Combinatorial homotopy between combinatorial paths is an equivalence relation
that is compatible with products and inverses, in the sense that if £, &', n, " are com-
binatorial paths so that &, n) (resp. &', 1) are combinatorially homotopic and so that &n
is defined, then &1, 17‘1 (resp. &1, 17"1) are combinatorially homotopic, and &'’ is de-
fined and combinatorially homotopic to 7.

Definition 4.14. Let X be a simplicial complex. Let £ = (x, ..., x,;) be a combinatorial
path in X. The topological realisation of & is a continuous path &p: I — X with origin

xo and end x,,, where
n

I=1to, ta] = | Jitj-1, 1]

j=1

is an interval of the real line made up of n subintervals with disjoint interiors, and &top
maps successively [f¢, 1] onto the edge of £ from x( to x1, [f1, t2] onto the edge of £ from
X1 t0 x9,...,and [t,_1, t, ] onto the edge of £ from x,,_; to x,,.

The following lemma is an immediate consequence of the definitions.

Lemma 4.15. (i) Anyloop in X,p based at x( is homotopic to the topological realisa-
tion of a combinatorial loop based at x.
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(ii) Let &, &’ be combinatorial paths. Then &, £’ are combinatorially homotopic if and
only if Eiop, &y, are homotopic in the topological sense.

Lemma 4.16. Let X be a connected simplicial complex and let & = (xo, x1,..., X, = Xqo)
be a combinatorial path in X based at xy € X". Suppose &op is homotopically trivial as a
loop in X;op based at xo.

Then ¢ is combinatorially homotopic to a product

N

e —1
l_[umuj

=1

where, forall j € {1,..., N}, u; is a combinatorial path from x, to some vertex z; € X0,
and r; haslength 3 and all its vertices belong to a common 2—simplex, i.e. r; is of the form

S /] .
(zj, z,2/, zj).
Proof. First, observe that if

n= (XO, Yi,- - Yi-1, Yi, Yi+l, - - s Yk-1, xO)/ 17, = (XO, Yi,-- -, Yi-1, Yi+1,- - - s Yk-1, xO)

are two triangle homotopic combinatorial loops based at xo where {y;-1, yi, yi+1} is a
2-simplex in X, then setting

u:=(xg,..., Yi-1, yi+1), ri= (yz'+1, Yi-1,Yi, yz'+1)

produces an elementary graph homotopy between 1 and uru~'n’, and similarly i’ and
ur~lu~1n are elementarily graph homotopic.

Now, fix a combinatorial path £ as in the statement. By assumption and the previ-
ous lemma, £ and (xp) are combinatorially homotopic, so that there is a sequence &y =
&,&1,...,& = (x0) of combinatorial loops at xo with &;_1, &; being either elementarily
graph homotopic or triangle homotopic, forany j € {1,...,{}. Say &;_1, &; are triangle
homotopic for N of the j’s. Applying N times the observation above written for n, 1/, the
conclusion follows. O

For our next purposes, we will take for granted the next proposition.

Proposition 4.17. Let X be a connected simplicial complex, and let d; be the combina-
torial metric on the geometric realisation Y of X!.

On the topological realisation Z of X?, there exists a unique combinatorial metric dy
making each edge an interval of length 1, each 2—cell of Z a euclidean equilateral trian-
gle of side-length 1, and such that (Z, d3) is a complete geodesic space. Moreover, the
inclusion (Y, d;) — (Z, d2) is a quasi-isometry.

4.3 The Rips 2—complex of a pseudo-metric space

In this part, we show that the coarse simple connectedness of a pseudo-metric space
is encoded in the simple connectedness of a topological space associated to the initial
space.
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Definition 4.18. Let (X, d) be a pseudo-metric space and ¢ > 0. The Rips simplicial
2—complex Rips?(X, d) is the 2—dimensional simplicial complex with X as set of vertices,
pairs (x, y) of distinct points of X with d(x, y) < c as set of oriented edges, and triples
(x,y, z) of distinct points of X with mutual distances bounded by c as set of oriented
2—simplices.

The Rips 2—complex is the geometric realisation of this 2—complex and is also de-
noted Rips?(X, d). It is endowed with the combinatorial metric of Proposition 4.17.

Observe thatif ¢” > ¢’ > 0, there is a canonical inclusion

j: Rips%(X, d) < Rips?.(X,d)

C//

which is the identity on the 0—skeletons.
The next result is also an immediate consequences of the definitions.

Proposition 4.19. Let (X, d) be a pseudo-metric space, xo € X, andc” > ¢’ > ¢ > 0. Then
the following claims hold.

(i) X isc—coarsely connected if and only if Rips*(X, d) is connected.

(i) X is c—coarsely geodesic if and only if the natural inclusion X < Rips*(X,d) is a
metric coarse equivalence.

(iii) X is c—large-scale geodesic if and only if the natural inclusion X — Rips*(X,d) isa
quasi-isometry.

2
C//

(iv) If Ripsf,(X, d) is connected, then Rips:,(X, d) is connected.

(v) X has Property SC(c’, ¢”) ifand only if the induced homomorphism
j.: mi(Rips%(X, d)) —> m1(Rips?.(X, d))
is trivial.

Proof. (iv) follows from (i) and the fact that ¢’—coarse connectedness implies ¢” —coarse
connectedness.

Letus prove (v). Assume first that X has SC(c’, ¢”’). Let y € rt;(Rips?(X, d)). By Lemma
4.15(i), y can be represented by a combinatorial loop at x¢ in X, and the latter defines
a ¢’-loop ¢ in X based at xg. As X has SC(c’, ¢”), £ is ¢”—homotopic to (xg). This ho-
motopy provides a combinatorial homotopy from &, viewed as a combinatorial loop in
Rips?,(X, d), to the trivial loop. Hence j.(y) = 1 € 7;(Rips?,(X, d)).

Conversely, if j, has trivial image and & is a c’—loop in X at xy, then there is ahomotopy
from &;op viewed as a loop in Rips?,/(X ,d) to the trivial loop. From Lemma 4.15(ii), there
is a combinatorial homotopy from &, viewed as a combinatorial loop in Rips?,,(X ,d), to
the constant loop. The latter combinatorial homotopy is a ¢”—homotopy from ¢ to the

constant loop (xp). Thus X has Property SC(c’, ¢”). O
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Therefore, the coarse simple connectedness of a space (X, d) is equivalent to the sim-
ple connectedness of its Rips 2—complex.

Proposition 4.20. Let (X, d) be c—geodesic. The following claims are equivalent.

(i) X isc—coarsely simply connected.
(ii) Thereexistsk > c so that Ripsi(X ,d) is simply connected.
(ili) Thereexistsk > c so that Ripsz(X, d) is simply connected for anyK > k.

Proof. (i) = (iii) : Suppose that X is c—coarsely simply connected, i.e. for any ¢’ > ¢
there exists ¢”” > ¢ so that X has SC(c¢’, ¢”). In particular, there is k > ¢ so that X has Prop-
erty SC(c, k). Let K > k. By Lemma 4.5, that we may apply since X is c—geodesic, X also
has SC(k, k), and thus also SC(K, K). It follows from Proposition 4.19(v) that Rips?((X ,d)
is simply connected.

(iii) = (ii) is obvious.

(ii) = (i) : Assume that Ripsi(X ,d) is simply connected for some k > c. Since itis also a
geodesic space, it is coarsely simply connected by Proposition 4.10. As there is a metric
coarse equivalence between X and Ripsz(X ,d) by Proposition 4.19(ii), and as coarse sim-
ple connected is invariant under metric coarse equivalence by Theorem 4.8, we conclude
that X is a coarsely simply connected. O

Let us conclude this part by proving another caracterisation of coarse simple con-
nectedness.

Proposition 4.21. Let X be coarsely geodesic. The following claims are equivalent.

(i) The space X is coarsely simply connected.

(ii) The space X is coarsely equivalent to a simply connected geodesic metric space.

Proof. Assume first that X is coarsely simply connected. As it is coarsely geodesic, it is
coarsely equivalent to a geodesic metric space Z. Then Z is also coarsely simply con-
nected by Theorem 4.8, so Rips?(Z) is simply connected for ¢ > 0large enough. As Z and
Rips?(Z) are coarsely equivalent, it follows that X and Rips?(Z) are coarsely equivalent
as well.

Conversely, if f: X — Y is a metric coarse equivalence and Y is geodesic and sim-
ply connected, then Y is coarsely simply connected by Proposition 4.10, whence X is
coarsely simply connected as well by Theorem 4.8. O

4.4 Bounded presentations

Recall from Chapter 1 that a group G is generated by a set S if there is a surjective
homomorphism 7t: Fs — G, where Fs is the free group on S. The relations of such a
generation are the elements of Ker(7t). The set S is often called an alphabet.
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Definition 4.22. A presentation of a group G is a triple (S, 7t, R), where (S, 7t) is a gener-
ation of G and R is a subset of Fs generating Ker(m) as a normal subgroup. When given
such a data, we write

G = (S| R).

If (S, 7, R) is a presentation of G, the subset R C Fs is called a relating subset, and its
elements are the relators of the presentation. Observe that the relations are the elements

of the form
k
-
1_[ Wit iw;
i=1

withk >0,r,...,m € RUR™, wy,..., wi € Fs.

Definition 4.23. A bounded presentation for a group G is a presentation G = (S | R) with
R a set of relators of bounded length.

If G = (S | R) is a bounded presentation for G, we say that G is boundedly presented
overS.

If G has a presentation (S | R) with S and R finite, we say that G is finitely presented,
and if G is a topological group with a bounded presentation (S | R) and with S being
compact, we say that G is compactly presented. Observe that any finitely (resp. com-
pactly) presented group is finitely (resp. compactly) generated.

Example 4.24. (i) For any n > 1, the non-abelian free group F, = (ai,...,a, | 0)is
finitely presented.

(ii) The group Z? = (a,b | [a,b]) is finitely presented. In fact, as we will see below, any
finitely generated polycyclic group is finitely presented.

(iii) It is a well known fact thatif G = (S¢ | Rg) and H = (Sy | Ryg), then G+ H =
(SgU Sy | Rg URp).

Lemma 4.25. Let

1 N——H-"-Q 1
be a short exact sequence of groups.

(i) Assume that G is boundedly generated over a set S and that is generated as a normal
subgroup by N N s" for somen. Then Q is boundedly presented over 1(S).

(i) Letp: Fs - G bea generation of G so that the kernel of top: Fs - Q is generated as
a normal subgroup by a set R of relators of length at mostk € N. Then N is generated

as a normal subgroup of G by p(gk) N N.

Proof. (i) Foreachr € R, let r denote the word in the letters of (S) obtained by replacing
each letter s € S of r by the corresponding letter ri(s) € 7(S), and let R denote the set of

thoser. Foreachg € N ﬂgn, choose sy, ...,s, € Sso that g =s;...5,,and let&denote
the set of words of the form 7t(sy) ... 7t(s,). Then

((S) | Ry URy)
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is a bounded presentation of G/N.

(ii) Let M be the normal subgroup of G generated by p(S¥)NN. Itis clear that M c N, and
we must show that M = N. Upon replacing G by G/M, we may assume that M = {e},
and we show that N = {e}. Clearly, one has Ker(p) ¢ p(n o p). Letr € R, viewed as a

word in the letters of S U S~1. We have p(r) € §k N N, and therefore r € Ker(p). Since R

generates Ker(rto p) as anormal subgroup of Fs, it follows that Ker(rto p) € Ker(p). Hence
N = {e}. O

Lemma 4.26. Let
1 N——H-"-Q 1
be a short exact sequence of groups. Assume that N, Q are boundedly presented, i.e.

N =(Sn | Rn), Q =(Sq | Rg)

with Sy (resp. Sg) being symmetric and containing ey (resp. eq), and so that

my = sup |rlsy < 00, mq = sup |r|s, < 0.
reRyn TERQ

LetS;; ¢ G be symmetric, containing e and so thatn(S;,) = Sq. Leto: Sg — S be so
thatm(o(s)) = s foranys € Sg. Assume furthermore that there existk, { > 1 so that

(SLSNSL) NN € (Sn)F, (Sp)™ NN c (Sn)'.

Then G is boundedly presented, i.e. there exists a set R of words of bounded length in the
letters of Sy U Si S0 that
G =(SnUS; | Rg)

is a bounded presentation for G.
Proof. See [5,lemma 7.A.12]. O

In particular, for locally compact groups we get the following statement.

Proposition 4.27. Let
1 N——H-'-Q 1
be a short exact sequence of locally compact groups, where the topology of N coincides with

the topology induced by 1, and 1 is continuous and open. Assume that N, Q are compactly
presented, i.e.

N =(Sn | Rn), Q=(Sg | Rp)
with Sy C N (resp. So C Q) compact, and so that

my = sup |r|sy < oo, mq := sup |r|s, < 0.
reRy TERQ

Then the group G has a presentation (S | Rg) withSc ¢ G compact and

sup |r|s; < oo.
reRg

85



Notes 4.4 Bounded presentations

Proof. Keeping the notations from the previous statement, S.. can be chosen compact
by Lemma 1.39. Then S¢ = Sy U S, is a compact generating set for G, and the lengths of
the relators in R are bounded by max(my, k + 3, mg + {). |

We conclude this part relating bounded presentations and coarse simple connected-
ness.

Theorem 4.28. Let G be a group with a generating set S. The following claims are equiv-
alent.

(i) Thegroup G is boundedly presented overS.

(ii) Rips(G, ds) is simply connected for somec > 0.
(iii) Rips?(G,ds) is simply connected for all c > 0 large enough.
(iv) The metric space (G, ds) is coarsely simply connected.

Proof. The equivalences (ii) < (iii) < (iv) have already been showed in Proposition
4.20.

(i) = (ii) : Let G = (S | R) be a bounded presentation, and set m := m%{x {s(r). Let
re

¢ > max(1, ), andlet ¢ be aloop based at e in the topological realisation of Rips?(G, ds).
By Lemma 4.15(i), we can assume that ¢ is the topological realisation of a combinatorial
loop

n=(ec,51,5152,---,51--.5k=1,51-.-Sk-15k = €G)

with s, ...,s; € S. There are relators 1, ..., 7, € RU R~ and words wy, ..., wy € Fs so

that
4
$1...8; = nwjrjw]._l.
j=1

Letj € {1,...,¢}. As ls(rj) < m, any triple of vertices of r; is in a common 2-simplex,
so the prefix of the word w jrjw].‘l constitute a combinatorial loop that is combinatorially
homotopic to the constant loop. Hence 1 is combinatorially homotopic to the constant
loop, and thus & is homotopic to the trivial loop. It follows that Rips?(G, ds) is simply
connected.
(iii) = (i) : Letm > 1beaninteger so thatRipsZ (G, ds) is simply connected. Lett: Fs —>
G be a surjective morphism, and write N = Ker(n). Letw € N, and writew = s ...sx € S.
Consider

n=1(G,S1,---,51.--5k=1,51.--5k = €G)
which is a combinatorial loop based at ¢ in Ripsi(G, ds). Then n is combinatorially ho-
motopic to some combinatorial loop

N

|
l_[u]r]u].

j=1

asin Lemma4.16, where each r; is a combinatorial loop oflength at most 3 in Rips2,(G, ds).
Letting R denote the set of these 7}, it follows that G = (S | R). O
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4.5 Compactly presented groups

The first result of this section is an immediate consequence of our previous observa-
tions.

Theorem 4.29. Let G = (S) be a compactly generated locally compact group. Then G is
compactly presented if and only if (G, ds) is coarsely simply connected.

More generally, if G is a o —compact locally compact group with d an adapted pseudo-
metric, then G is compactly presented if and only if the pseudo-metric space(G, d) is coarsely
simply connected.

Proof. The first statement hold thanks to Theorem 4.28.

For the second statement, fix G a c—compactlocally compact group with d an adapted
pseudo-metric on G. Suppose first that G is compactly presented, say G = (S | R) with
S compact. Then (G, dg) is coarsely simply connected, and by Corollary 2.32, there is
a metric coarse equivalence between (G, ds) and (G, d). Coarse simple connectedness
being preserved by metric coarse equivalences (Theorem 4.8), we deduce that (G, d) is
coarsely simply connected as well, as claimed.

Conversely, assume that (G, d) is coarsely simply connected. In particular, (G, d) is
coarsely connected, so that G is compactly generated by Theorem 2.37. Let S be a com-
pact generating set for G. Since (G, ds) and (G, d) are coarsely equivalent, it follows that
(G, ds) is also coarsely simply connected, whence G is in fact compactly presented. O

We can therefore conclude that compact presentation provides an additional coarse
geometric invariant.

Corollary 4.30. Among o—compact locally compact groups, being compactly presented is
invariant under metric coarse equivalence.

In particular, among compactly generated locally compact groups, being compactly
presented is invariant under quasi-isometry.

Example 4.31. For instance any virtually free group, such as SLy(Z), Zy * Zy * Zy * Zo,
PSLy(Z), or D, is finitely presented.

This allows us to deduce how compact presentation behaves when passing to cocom-
pact closed subgroups.

Corollary 4.32. Let G be a locally compact group, and H a cocompact closed subgroup.
Then G is compactly presented if and only if H is compactly presented.

Proof. Let d be an adapted pseudo-metric on G. Then the inclusion (H, d) — (G, d)isa
coarse embedding by Corollary 2.32, and it is essentially surjective since H is cocompact.
Thus there is a metric coarse equivalence (H,d) — (G, d), so the conclusion follows
from Corollary 4.30. O

This corollary has the following consequence.
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Corollary 4.33. Compact groups are compactly presented.

In fact, our previous results on bounded presentations also show the following stabil -
ity properties.

Proposition 4.34. Let

1 N—H--Q 1
be a short exact sequence of locally compact groups and continuous homomorphisms.

(i) If G is compactly presented and N is compactly generated as a normal subgroup of
G, then Q is compactly presented.

(ii) IfG is compactly generated and Q is compactly presented, then N is compactly gen-
erated as a normal subgroup of G.

(iii) IfN and Q are compactly presented, then G is compactly presented.
Proof. This follows from Lemma 4.25 and Proposition 4.27. O

In the discrete setting, it has for instance the following nice application.

Theorem 4.35. Finitely generated polycyclic groups are finitely presented.
Proof. Let thus G be a finitely generated polycyclic group, with a sequence of subgroups
HOZ{eG}ngg"'gHs—lgHszc

so that H; < H;;; and the quotient group H;1/H; is cyclic, foranyi = 0,...,s — 1. We
prove that G is finitely presented by induction ons.

If s = 0, there is nothing to show. If s = 1 then G is cyclic, thus finitely presented.
Suppose then that the result holds for any finitely generated polycyclic group with a se-
quence of subgroups with length at most s — 1. Observe then that G fits into a short exact
sequence

l—H;_;—=G——G/Hs-1 —1

where H;_; is polycyclic with a sequence of subgroups as in Definition 1.44 whose length
does not exceed s — 1, thus is finitely presented by the inductive hypothesis. On the other
hand, the quotient G/H;_; = H;/H;_; is cyclic, thus finitely presented as well. We con-
clude that G is finitely presented by Proposition 4.34(iii). O

We conclude with the natural analog of Corollary 3.4 for compact presentation. To
state it, we just need one additional observation.

Proposition 4.36. Let G be a compactly generated locally compact group, S a compact
generating set, and d an adapted pseudo-metricon G. Letc > 1.

(i) Theinclusion of (G, d) into Ripsf(G, ds) is a metric coarse equivalence.
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(ii) Ifd is moreover geodesically adapted, the inclusion of (G, d) into Rips*(G, ds) is a
quasi-isometry.

Proof. (i) We know from Corollary 2.32 that the identity map (G, d) — (G, ds) is ametric
coarse equivalence, and from Proposition 4.19 that (G, ds) < Rips(G, ds) is a quasi-
isometry. Thus (G, d) — Rips?(G, dg) is a metric coarse equivalence.

(ii) If moreover d is geodesically adapted, the same argument as in (i) replacing Corollary
2.32 by Corollary 2.39 shows that (G, d) < Rips%(G, ds) is a quasi-isometry. O

Combining Theorem 4.28, Theorem 4.29 and Proposition 4.36, we deduce the next
equivalences.

Corollary 4.37. LetG bea compactly generated locally compact group, S a compact gener-
ating set, and d a geodesically adapted pseudo-metric on G. The following are equivalent.

(i) The locally compact group G is compactly presented.

(i) The pseudo-metric space (G, d) is coarsely simply connected.
(iii) Theinclusion map (G,d) — Rips’(G, ds) is a metric coarse equivalence forallc > 1.
(iv) The inclusion map (G, d) — Rips*(G, ds) is a quasi-isometry forallc > 1.

(v) Rips(G, ds) is simply connected for all c large enough.

Thus, for compact presentation, Milnor-Schwarz lemma takes the following form.

Theorem 4.38. Let G be a locally compact group acting geometrically on a pseudo-metric
space X.

Then G is compactly presented if and only if X is coarsely simply connected.

We can therefore conclude that geometric actions on geodesic simply connected met-
ric spaces caracterise compactly presented groups.

Corollary 4.39. Let G be a locally compact group. The following claims are equivalent.

(i) Thegroup G is compactly presented.

(ii) Thereexistsageometricaction of G on a non-empty coarsely simply connected pseudo-
metric space.

(iii) There exists a geometric action of G on a non-empty geodesic simply connected met-
ric space.

(iv) There exists a geometric faithful action of G on a non-empty geodesic simply con-
nected metric space.
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