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Introduction

As outlined for instance in [2, 4, 13, 24], amenability for groups has grown into a
central theme of research in geometric group theory since the 30’s, thanks to John Von
Neumann and his work on the famous Banach-Tarski-Hausdorff paradox. Amenabil-
ity admits a wide variety of equivalent characterizations, establishing deep connec-
tions between group theory and apparently unrelated mathematical areas, such as
geometry, functional analysis, probability theory, or ergodic theory.

A particularly interesting link with the notion of unitarisability for groups has
attracted much attention since the essential works of Jacques Dixmier in the early
50’s. In [11], Dixmier showed that any amenable group is unitarisable, and asked
whether the converse holds:

Dixmier’s problem. Is every unitarisable group amenable?

The answer to this question is still unknown in full generality, but a lot of progress
has been made towards the understanding and the main properties of the class of
unitarisable groups. In 1955, Ehrenpreis and Mautner obtained in [14] the first exam-
ple of a non-unitarisable group, SL2(ℝ). Later on, it was showed that non-abelian free
groups are also non-unitarisable. It is also known that the class of unitarisable groups
enjoys several stability properties, when taking subgroups, quotients, and extensions
by amenable groups. All these results are in favour of a positive answer to Dixmier’s
problem.

Gilles Pisier has been a great contributor to those questions, with in particular two
results of major interest, exposed in [25, 26]. The first one is a quantitive measurement
of unitarisability, and shows that we can always have a good control on the size of
unitarisers for uniformly bounded representations of a unitarisable group. The second
one improves this control if the group is amenable.

In 2014, Peter Schlicht obtained in [29, 30] proofs of Pisier’s results in a completely
different manner, much more geometric, by looking at actions of groups on the cone of
positive invertible operators on a Hilbert space. The goal of this thesis is to present
these proofs and their consequences.

Along the way, a large number of preliminaries will be required, and we now de-
scribe the content of each chapter, with an emphasize on the main results.

Chapter 1 focuses on the theory of bounded linear operators on Hilbert spaces. Af-
ter recalling general background material concerning Banach and Hilbert spaces, we
introduce linear operators, and prove an invertibility criterion (Proposition 1.2). We
recall the construction of adjoint operators with the Riesz representation theorem.
Afterwards, we study several classes of operators, especially normal, self-adjoint, uni-
tary, positive and isometric operators (Proposition 1.9). Then, we turn to the spectral
theory of bounded operators, and introduce the spectrum, resolvent set and spectral
radius of an operator. We show that its spectral radius is always bounded by its norm
(Proposition 1.12), and that its spectrum is always a compact subset of the complex
plane (Proposition 1.14). In fact, it is a compact subset of the real line for self-adjoint
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operators, and of the positive real numbers for positive operators (Proposition 1.19).
We derive several useful properties of the spectral radius (Corollary 1.25) through the
Gelfand’s formula (Theorem 1.24). To pursue, we focus on the functional calculus for
bounded self-adjoint operators, and establish its main properties (Theorem 1.30, The-
orem 1.35). This allows us to completely characterize self-adjoint, unitary and positive
operators through their spectrum (Corollary 1.32). An important application of func-
tional calculus for the rest of the text is the construction of the exponential map, that
we present in details (Corollary 1.38, Remark 1.39). We define square roots and po-
lar decompositions, and show their existence and uniqueness for suitable operators
(Theorem 1.42). We derive from this a complete description of positive operators on a
Hilbert space (Corollary 1.43). We conclude this chapter by looking at another topol-
ogy on the space of bounded operators on a Hilbert space. This topology is smaller
than the norm topology (Lemma 1.48), but still remains Hausdorff (Lemma 1.50). The
interest of considering it is to obtain more compact subsets (Theorem 1.52).

Chapter 2 is devoted to the cone of positive invertible operators on a Hilbert space.
We explain the terminology "cone" (Lemma 2.1), and we define a natural action of in-
vertible operators on this set, which is transitive and continuous (Lemma 2.3). We
endow this set with a metric structure, and we show that invertible operators act by
isometries with respect to that metric (Proposition 2.6). Next, we show this metric
space is geodesic, and that geodesics are preserved by the action of invertible operators
(Lemma 2.8). The second part of this chapter aims at proving a convexity inequality
for the distance between those geodesics. In that view, we introduce an order rela-
tion on the set of self-adjoint operators (Definition 2.10) and establish several rules of
computations for this relation (Proposition 2.11). We prove the Löwner-Heinz inequal-
ity for positive operators (Theorem 2.14), from which we derive additional operator
inequalities, especially the Jensen’s inequality (Theorem 2.17) for contractions, and a
more general form for general operators (Corollary 2.18). We also derive the Corach-
Porta-Recht inequality (Theorem 2.20) and the Cordes inequality (Corollary 2.21), the
crucial ingredient for the proof of the convexity inequality (Theorem 2.23).

Chapter 3 is the central part of the thesis. We define representations of groups
on Hilbert spaces and several related terminologies. We introduce unitarisability for
representations, and we prove it is equivalent to the existence of an invariant inner
product on the Hilbert space inducing the same topology as the initial one (Lemma
3.8). We define the class of unitarisable groups. We show it contains finite groups
(Corollary 3.9), and that it is closed under taking quotients and subgroups (Proposi-
tion 3.10, Proposition 3.12). In particular, induction of representations is presented in
details. Next, we prove that amenable groups are unitarisable, recovering the result of
Dixmier (Theorem 3.13). On the other hand, we establish also the non-unitarisability
of the non-abelian free group on countably many generators (Theorem 3.18), appeal-
ing to the concept of derivations. Coupled with the Ping-Pong lemma (Lemma 3.19),
we deduce that any non-abelian free group is not unitarisable, as well as many linear
groups, for instance SL2(ℝ) (Corollary 3.22). In the following section, we explain how
a group representation gives rise to an action of the group on the cone of positive in-
vertible operators, and this action has fixed points if and only if the representation is
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unitarisable (Lemma 3.23). Exploiting the weak operator topology, we prove that a uni-
tarisable representation can always be unitarised at minimal "cost" (Proposition 3.25).
Given a unitarisable representation 𝜋 of a group 𝐺, we introduce a family (𝜋𝑡)𝑡∈[0,1]
of representations of 𝐺 for which we can recover sizes and unitarisers in terms of
the corresponding ones for 𝜋 (Lemma 3.27, Corollary 3.28). In the next subsection,
we define the diameter of a representation, and we provide an explicit formula for its
computation (Proposition 3.31). We can then relate the size of 𝜋𝑡, 𝑡 ∈ [0, 1], to the
size of 𝜋 (Proposition 3.32). With these results, we show that if a countable family of
uniformly bounded representations of a unitarisable group is also uniformly bounded,
each representation can be unitarised at low cost, and this cost is uniform through-
out the whole family (Proposition 3.35). We then establish Pisier’s theorem (Theorem
3.36), and using functional calculus, we relate size of unitarisers for a unitarisable
representation to the distance between the identity and the set of fixed points for the
induced action (Proposition 3.39). This leads to a geometric translation of Pisier’s re-
sult (Corollary 3.40), which in turn leads to a geometric formulation of amenability
(Corollary 3.41).

Two appendices are added. Appendix A contains basic material about general
topology, with which most of the readers will be familiar. It is provided for the sake
of completeness, for recalling basic definitions and properties of topological spaces,
and for justifying easily many parts in several proofs. Appendix B is an introduction
to the theme of amenability for groups. We recall several equivalent formulations of
amenability. We explore the class of amenable groups, in order to illustrate clearly
similarities with unitarisability in Chapter 3.
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Notations

∅ The empty set
ℕ = {0, 1, 2, . . . } The set of natural integers
ℤ The set of integers
ℚ The set of rational numbers
ℝ The set of real numbers
ℂ The set of complex numbers
|𝑧| The modulus of 𝑧 ∈ ℂ

𝑧 The complex conjugate of 𝑧 ∈ ℂ

𝕊1 = {𝜆 ∈ ℂ : |𝜆 | = 1} The unit circle in the complex plane
𝐾 [𝑋] The set of polynomials with coefficients in a field 𝐾
𝐴 ⊂ 𝐵 𝐴 is a subset of 𝐵
𝐴 ∪ 𝐵 The union of two sets 𝐴 and 𝐵
𝐴 ⊔ 𝐵 The disjoint union of two sets 𝐴 and 𝐵
𝐴 ∩ 𝐵 The intersection of two sets 𝐴 and 𝐵
𝐴Δ𝐵 The symmetric difference of 𝐴 and 𝐵, given by (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵)
1𝑋 The indicator function of the set 𝑋
Id𝑋 The identity map on a set 𝑋
|𝑋 | The cardinality of the set 𝑋
Ps(𝑋) The set of subsets of 𝑋
Vect(𝑋) The vector subspace generated by 𝑋
𝑔 ◦ 𝑓 The composition of two functions 𝑓 and 𝑔
𝑓 −1 The inverse of a bijective map 𝑓
| 𝑓 | The modulus of a ℂ−valued map 𝑓
F (𝑋,𝑌) The set of maps from 𝑋 to 𝑌
exp: ℝ −→ (0,∞) The exponential map from ℝ to (0,∞)
ln : (0,∞) −→ ℝ The inverse of the exponential map
a.e. almost everywhere
𝑒𝐺 The neutral element of a group 𝐺
𝐻 ⩽ 𝐺 𝐻 is a subgroup of 𝐺
𝑁 ◁ 𝐺 𝑁 is a normal subgroup of 𝐺
𝐺/𝐻 The quotient set of 𝐺 by a subgroup 𝐻
𝐺/𝑁 The quotient group of 𝐺 by a normal subgroup 𝑁
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[𝐺 : 𝐻] The index of 𝐻 in 𝐺, defined as the cardinality of 𝐺/𝐻
𝛿𝑔 The Dirac mass at 𝑔 ∈ 𝐺, equals to 1{𝑔} : 𝐺 −→ ℂ

GL𝑛(𝐾) The group of invertible 𝑛 × 𝑛 matrices with entries in a field 𝐾
GL𝑛(ℤ) The group of invertible 𝑛 × 𝑛 matrices with integer entries
SL𝑛(𝐾) The group of determinant one 𝑛 × 𝑛 matrices with entries in a field 𝐾
SL𝑛(ℤ) The group of determinant one 𝑛 × 𝑛 matrices with integer entries
� An isomorphism between two objects in the same category
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1. Bounded operators on Hilbert spaces

In this first chapter, we develop the general theory about bounded linear operators
on a complex Hilbert space. After having studied several types of operators, we de-
fine the spectrum and the spectral radius of a bounded operator and establish their
main properties. We introduce the functional calculus, and we show the existence of
square roots for bounded positive operators and polar decompositions for invertible
operators. To conclude, we define and study a new topology on the space of bounded
linear operators on a Hilbert space.

Before focusing on Hilbert spaces, we recall terminologies and results from the
more general setting of normed and Banach spaces. We will not show all the results
below, but we indicate references for the proofs.

Recall first that a norm on a ℂ−vector space 𝑋 is a map ∥ · ∥𝑋 : 𝑋 −→ [0,∞) so
that

(i) ∥𝑥∥𝑋 = 0 if and only if 𝑥 = 0.

(ii) ∥𝜆𝑥∥𝑋 = |𝜆 |∥𝑥∥𝑋 for all 𝑥 ∈ 𝑋,𝛼 ∈ ℂ.

(iii) ∥𝑥 + 𝑦∥𝑋 ≤ ∥𝑥∥𝑋 + ∥𝑦∥𝑋 for all 𝑥, 𝑦 ∈ 𝑋 .

Point (iii) is called the triangle inequality, and the pair (𝑋, ∥ · ∥𝑋 ) is called a normed
space.

Note that if (𝑋, ∥ · ∥𝑋 ) is a normed space, then one has also a second triangle
inequality, namely ��∥𝑥∥𝑋 − ∥𝑦∥𝑋

�� ≤ ∥𝑥 − 𝑦∥𝑋
for all 𝑥, 𝑦 ∈ 𝑋 . Indeed if 𝑥, 𝑦 ∈ 𝑋 , then ∥𝑥∥𝑋 = ∥(𝑥−𝑦)+𝑦∥𝑋 ≤ ∥𝑥−𝑦∥𝑋+∥𝑦∥𝑋 by (iii), so
∥𝑥∥𝑋−∥𝑦∥𝑋 ≤ ∥𝑥−𝑦∥𝑋 . Switching the roles of 𝑥 and 𝑦 leads to ∥𝑦∥𝑋−∥𝑥∥𝑋 ≤ ∥𝑥−𝑦∥𝑋 ,
whence

��∥𝑥∥𝑋 − ∥𝑦∥𝑋
�� ≤ ∥𝑥 − 𝑦∥𝑋 as announced.

A normed space (𝑋, ∥ · ∥𝑋 ) is a metric space for the metric d𝑋 : 𝑋 × 𝑋 −→ [0,∞)
defined by

d𝑋 (𝑥, 𝑦) = ∥𝑥 − 𝑦∥𝑋 , 𝑥, 𝑦 ∈ 𝑋
and thus a topological space for the topology induced by d𝑋 (see Appendix A), that we
denote 𝜏∥·∥𝑋 . For 𝑥 ∈ 𝑋 and 𝑟 > 0, we write 𝐵∥·∥𝑋 (𝑥, 𝑟) (resp. 𝐵′

∥·∥𝑋 (𝑥, 𝑟)) for the open
(resp. closed) ball of radius 𝑟 > 0 around 𝑥 ∈ 𝑋 . Moreover, the norm is a continuous
map for this topology.

Proof. Let 𝜀 > 0, and note that

∥ · ∥−1
𝑋 ( [0, 𝜀)) = {𝑥 ∈ 𝑋 : ∥𝑥∥𝑋 < 𝜀} = {𝑥 ∈ 𝑋 : d𝑋 (𝑥, 0) < 𝜀} = 𝐵∥·∥𝑋 (0, 𝜀)

is an open set in 𝑋 , by definition of 𝜏∥·∥𝑋 . Thus ∥ · ∥𝑋 : 𝑋 −→ [0,∞) is continuous. □
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A sequence (𝑥𝑛)𝑛∈ℕ in a normed space (𝑋, ∥ · ∥𝑋 ) is called a Cauchy sequence with
respect to d𝑋 if for any 𝜀 > 0, there exists 𝑁 ∈ ℕ so that

𝑛, 𝑚 ≥ 𝑁 =⇒ d𝑋 (𝑥𝑛, 𝑥𝑚) < 𝜀.

We say that (𝑋, ∥ · ∥𝑋 ) is a Banach space if the metric space (𝑋, d𝑋 ) is complete, i.e.
if any Cauchy sequence with respect to d𝑋 has a limit in 𝑋 .

Most important examples of Banach spaces are as follows.

Examples. (i) If 𝑋 is a finite-dimensional vector space, any two norms ∥ · ∥𝑋 , ∥ · ∥′𝑋
on 𝑋 are equivalent, in the sense that there are constants 𝑐, 𝑐′ > 0 so that

𝑐∥𝑥∥𝑋 ≤ ∥𝑥∥′𝑋 ≤ 𝑐′∥𝑥∥𝑋
for all 𝑥 ∈ 𝑋 (see e.g. [3, theorem 1.2.5], [6, theorem 3.3.1]). Moreover, 𝑋 is complete
for any choice of norm [3, corollary 1.2.6].
(ii) For 𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏, the space 𝐶( [𝑎, 𝑏]) of continuous functions on the interval
[𝑎, 𝑏], equipped with the norm

∥ 𝑓 ∥∞ ··= sup
𝑡∈[𝑎,𝑏]

| 𝑓 (𝑡) |

is a Banach space [15, section 1.5]. More generally, if 𝑋 is a compact Hausdorff space,
the space 𝐶(𝑋) of continuous functions on 𝑋 with the supremum norm is a Banach
space [6, example 3.1.6].
(iii) Consider a measure space (𝑋,𝔸, 𝜇) and, for 1 ≤ 𝑝 < ∞, the vector space

L𝑝(𝑋,𝔸, 𝜇) ··=
{
𝑓 : 𝑋 −→ ℂ measurable

�� ∫
𝑋

| 𝑓 |𝑝 d𝜇 < ∞
}

and also

L∞(𝑋,𝔸, 𝜇) ··= {𝑓 : 𝑋 −→ ℂ measurable | ∃𝐶 ≥ 0, | 𝑓 | ≤ 𝐶 𝜇 − a.e.}.

For every 𝑝 ∈ [1,∞], we define an equivalence relation ∼ on L𝑝(𝑋,𝔸, 𝜇) by 𝑓 ∼ 𝑔 if
and only if 𝑓 = 𝑔 𝜇−a.e., and we form the quotient

𝐿𝑝(𝑋,𝔸, 𝜇) ··= L𝑝(𝑋,𝔸, 𝜇)/∼ .

Identifying an equivalence class with one of its representatives, we define a norm ∥ · ∥𝑝
on the quotient via

∥ 𝑓 ∥𝑝 ··=
( ∫

𝑋

| 𝑓 |𝑝 d𝜇
)1/𝑝

for every 1 ≤ 𝑝 < ∞ and 𝑓 ∈ 𝐿𝑝(𝑋,𝔸, 𝜇), as well as

∥ 𝑓 ∥∞ ··= inf{𝐶 ∈ [0,∞] : | 𝑓 | ≤ 𝐶 𝜇 − a.e.}

if 𝑓 ∈ 𝐿∞(𝑋,𝔸, 𝜇). It can be shown that, for every 𝑝 ∈ [1,∞], (𝐿𝑝(𝑋,𝔸, 𝜇), ∥ · ∥𝑝) is
a complete normed space [20, theorem 4.2.2]. If 𝑋 is countable, we denote this space
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ℓ 𝑝(𝑋,𝔸, 𝜇), or even ℓ 𝑝(𝑋) if the underlying 𝜎−algebra and measure are clear from
the context.

If (𝑋, ∥ · ∥𝑋 ), (𝑌, ∥ · ∥𝑌 ) are two normed spaces, a linear operator between 𝑋 and 𝑌
is a map 𝐴 : 𝑋 −→ 𝑌 so that

𝐴(𝜆𝑥 + 𝑦) = 𝜆𝐴(𝑥) + 𝐴(𝑦)

for all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 and 𝜆 ∈ ℂ.
In the sequel, we merely write 𝐴𝑥 for the image of 𝑥 ∈ 𝑋 under 𝐴.
Such an operator is continuous if and only if it is bounded, i.e. there exists a con-

stant 𝐶 > 0 so that ∥𝐴𝑥∥𝑌 ≤ 𝐶∥𝑥∥𝑋 for any 𝑥 ∈ 𝑋 ([3, theorem 1.2.2], [6, proposition
2.2.1]). The set of bounded linear operators between two normed spaces 𝑋 and 𝑌 will
be denoted B(𝑋,𝑌), or simply B(𝑋) if 𝑋 = 𝑌 . It has the structure of a vector space
over ℂ for the sum and scalar multiplication defined as

(𝐴 + 𝐵) (𝑥) ··= 𝐴𝑥 + 𝐵𝑥, (𝜆𝐴) (𝑥) ··= 𝜆𝐴𝑥

for any 𝐴, 𝐵 ∈ B(𝑋,𝑌), 𝑥 ∈ 𝑋 and 𝜆 ∈ ℂ. The map ∥ · ∥op : B(𝑋,𝑌) −→ [0,∞), defined
as

∥𝐴∥op ··= sup
𝑥≠0

∥𝐴𝑥∥𝑌
∥𝑥∥𝑋

= sup
∥𝑥∥𝑋≤1

∥𝐴𝑥∥𝑌 = sup
∥𝑥∥𝑋=1

∥𝐴𝑥∥𝑌

for any 𝐴 ∈ B(𝑋,𝑌), is a norm on B(𝑋,𝑌) [6, proposition 2.1.2]. Moreover, for 𝐴 ∈
B(𝑋,𝑌) one has

∥𝐴𝑥∥𝑌 ≤ ∥𝐴∥op∥𝑥∥𝑋
for all 𝑥 ∈ 𝑋 , and ∥ · ∥op is submultiplicative, i.e. if 𝑋 , 𝑌 , and 𝑍 are three normed
spaces and 𝐴 ∈ B(𝑋,𝑌), 𝐵 ∈ B(𝑌, 𝑍), then 𝐵 ◦ 𝐴 ∈ B(𝑋, 𝑍) and

∥𝐵 ◦ 𝐴∥op ≤ ∥𝐴∥op∥𝐵∥op.

Proof. The inequality ∥𝐴𝑥∥𝑌 ≤ ∥𝐴∥op∥𝑥∥𝑋 is a consequence of the definition of ∥𝐴∥op
for 𝑥 ≠ 0, and it clearly holds if 𝑥 = 0. Now, if 𝑋 , 𝑌 and 𝑍 are normed spaces, 𝐴 ∈
B(𝑋,𝑌), 𝐵 ∈ B(𝑌, 𝑍) and 𝑥 ∈ 𝑋 with ∥𝑥∥𝑋 ≤ 1, one has

∥(𝐵 ◦ 𝐴)𝑥∥𝑍 ≤ ∥𝐵∥op∥𝐴𝑥∥𝑌 ≤ ∥𝐴∥op∥𝐵∥op∥𝑥∥𝑋 ≤ ∥𝐴∥op∥𝐵∥op

so that ∥𝐵 ◦ 𝐴∥op ≤ ∥𝐴∥op∥𝐵∥op as announced. □

When there is no risk of confusion we simply write ∥𝑥∥ for the norm of an element
𝑥 ∈ 𝑋 of a normed space, or ∥𝐴∥ for the operator norm ∥𝐴∥op of a bounded linear
operator between two normed spaces. We also write 𝐵𝐴 for the composition of the two
operators 𝐴 and 𝐵.

The next theorem guarantees that B(𝑋,𝑌) is in fact a complete space, provided 𝑌
is complete.

Theorem. Let (𝑋, ∥ · ∥𝑋 ), (𝑌, ∥ · ∥𝑌 ) be two normed spaces, and assume that 𝑌 is
a Banach space. Then B(𝑋,𝑌) is a Banach space.
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Proof. Let (𝐴𝑛)𝑛∈ℕ be a Cauchy sequence in B(𝑋,𝑌). Let 𝜀 > 0 and 𝑥 ∈ 𝑋 . Using the
assumption, we find 𝑁 ∈ ℕ so that ∥𝐴𝑛 − 𝐴𝑚∥ < 𝜀 for all 𝑛, 𝑚 ≥ 𝑁, and this implies

∥𝐴𝑛𝑥 − 𝐴𝑚𝑥∥𝑌 ≤ ∥𝐴𝑛 − 𝐴𝑚∥∥𝑥∥𝑋 < 𝜀∥𝑥∥𝑋

for all 𝑛, 𝑚 ≥ 𝑁. Thus (𝐴𝑛𝑥)𝑛∈ℕ is Cauchy in 𝑌 , and since the latter is complete,
(𝐴𝑛𝑥)𝑛∈ℕ has a limit in 𝑌 , that we denote 𝐴𝑥. This defines a linear map between 𝑋

and 𝑌 .
It remains to see that 𝐴 is bounded and that (𝐴𝑛)𝑛∈ℕ converges to 𝐴 in B(𝑋,𝑌).

Fix 𝜀 > 0. As seen above, we find 𝑁 ∈ ℕ so that ∥𝐴𝑛 − 𝐴𝑚∥ < 𝜀 for all 𝑛, 𝑚 ≥ 𝑁, and
in particular

∥𝐴𝑛𝑥 − 𝐴𝑚𝑥∥𝑌 ≤ ∥𝐴𝑛 − 𝐴𝑚∥∥𝑥∥𝑋 < 𝜀∥𝑥∥𝑋
for all 𝑛, 𝑚 ≥ 𝑁 and all 𝑥 ∈ 𝑋 . Thus

∥𝐴𝑥 − 𝐴𝑛𝑥∥𝑌 = lim
𝑚→∞

∥𝐴𝑚𝑥 − 𝐴𝑛𝑥∥𝑌 ≤ 𝜀∥𝑥∥𝑋

for all 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝑋 , by continuity of the norm. In particular we deduce

∥𝐴𝑥∥𝑌 ≤ ∥𝐴𝑥 − 𝐴𝑁𝑥∥𝑌 + ∥𝐴𝑁𝑥∥𝑌 ≤ (∥𝐴𝑁 ∥ + 𝜀)∥𝑥∥𝑋

for all 𝑥 ∈ 𝑋 , whence 𝐴 is bounded. Additionally, from the above we have

∥𝐴𝑥 − 𝐴𝑛𝑥∥𝑌
∥𝑥∥𝑋

≤ 𝜀

for 𝑛 ≥ 𝑁 and 𝑥 ≠ 0, and it follows that

∥𝐴 − 𝐴𝑛∥ = sup
𝑥≠0

∥𝐴𝑥 − 𝐴𝑛𝑥∥𝑌
∥𝑥∥𝑋

≤ 𝜀

for all 𝑛 ≥ 𝑁. As 𝜀 > 0 was arbitrary, this shows that 𝐴𝑛 → 𝐴 in B(𝑋,𝑌), and
concludes the proof. □

In particular, if 𝑋 is a normed space, choosing𝑌 = ℂ in the previous theorem shows
that B(𝑋,ℂ) is a Banach space. This space is called the dual space of 𝑋 , and is often
denoted 𝑋∗. Its elements are called linear functionals on 𝑋 .

If H is a complex vector space, a hermitian inner product on H is a map

⟨·, ·⟩H : H ×H −→ ℂ

so that

(i) ⟨𝜆𝑢 + 𝜇𝑣, 𝑤⟩H = 𝜆⟨𝑢, 𝑤⟩H + 𝜇⟨𝑣, 𝑤⟩H for all 𝑢, 𝑣, 𝑤 ∈ H , 𝜆, 𝜇 ∈ ℂ.

(ii) ⟨𝑣, 𝑢⟩H = ⟨𝑢, 𝑣⟩H for all 𝑢, 𝑣 ∈ H .

(iii) ⟨𝑢, 𝑢⟩H ≥ 0 for all 𝑢 ∈ H , and ⟨𝑢, 𝑢⟩H = 0 implies 𝑢 = 0.
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The pair (H , ⟨·, ·⟩H ) is called a pre-Hilbert space. It follows from points (i) and (ii)
that a hermitian inner product is anti-linear in the second variable, i.e.

⟨𝑢,𝜆𝑣 + 𝜇𝑤⟩H = 𝜆⟨𝑢, 𝑣⟩H + 𝜇⟨𝑢, 𝑤⟩H
for all 𝑢, 𝑣, 𝑤 ∈ H and 𝜆, 𝜇 ∈ ℂ. It also follows from (ii) that ⟨𝑢, 𝑢⟩H is a real number
for any 𝑢 ∈ H , and it makes sense to talk about its sign in (iii). Additionally, (i) implies
that ⟨𝑢, 0⟩H = ⟨0, 𝑢⟩H = 0 for any 𝑢 ∈ H , and thus ⟨𝑢, 𝑢⟩H = 0 if and only if 𝑢 = 0.

As explained in [6, 12, 13, 15], a pre-Hilbert space can be turned into a normed
space, by defining the map

∥ · ∥H : H −→ [0,∞)
𝑢 ↦−→

√︁
⟨𝑢, 𝑢⟩H .

We call H a Hilbert space if the normed space (H , ∥ · ∥H ) is complete. Phrased differ-
ently, a Hilbert space is a Banach space for which the norm is induced by (or derived
from) a hermitian inner product.

Examples. (i) Let 𝑛 ≥ 1. The usual norm on ℂ𝑛, defined as

∥𝑥∥ ··=
√︁
|𝑥1 |2 + · · · + |𝑥𝑛 |2

for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ ℂ𝑛, derives from the inner product ⟨·, ·⟩ℂ𝑛 defined as

⟨𝑥, 𝑦⟩ℂ𝑛 ··=
𝑛∑︁
𝑖=1
𝑥𝑖𝑦𝑖

for any 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ ℂ𝑛. Coupled with the fact that ℂ𝑛 is
complete, this tells us that ℂ𝑛 is a Hilbert space.
(ii) If (𝑋,𝔸, 𝜇) is a measure space, the norm ∥ · ∥2 on 𝐿2(𝑋,𝔸, 𝜇) defined above is
easily seen to derive from the inner product ⟨·, ·⟩2 given by

⟨𝑓 , 𝑔⟩2 ··=
∫
𝑋

𝑓 (𝑥)𝑔(𝑥) d𝜇(𝑥)

for any 𝑓 , 𝑔 ∈ 𝐿2(𝑋,𝔸, 𝜇). Thus 𝐿2(𝑋,𝔸, 𝜇) is a Hilbert space.

A consequence of these definitions is the so-called Cauchy-Schwarz inequality ([3,
lemma 1.4.2], [13, lemma 1.3], [15, theorem 2.1.1]), which ensures that

|⟨𝑢, 𝑣⟩H | ≤ ∥𝑢∥H ∥𝑣∥H
for any 𝑢, 𝑣 ∈ H , as well as the continuity of the inner product in each variable, i.e.
for any 𝑣 ∈ H the maps 𝑢 ↦−→ ⟨𝑢, 𝑣⟩H , 𝑢 ↦−→ ⟨𝑣, 𝑢⟩H are continuous from H to ℂ.

Proof. Let 𝑣 ∈ H . We show the continuity of 𝑢 ↦−→ ⟨𝑢, 𝑣⟩, and the other one is very
similar. Let then 𝑢0 ∈ H and 𝜀 > 0. Set 𝛿 ··= 𝜀

1+∥𝑣∥ > 0, and observe that if ∥𝑢−𝑢0∥ < 𝛿,
then

|⟨𝑢, 𝑣⟩ − ⟨𝑢0, 𝑣⟩| = |⟨𝑢 − 𝑢0, 𝑣⟩| ≤ ∥𝑢 − 𝑢0∥∥𝑣∥ < 𝛿 ∥𝑣∥ < 𝜀

by the Cauchy-Schwarz inequality. Hence 𝑢 ↦−→ ⟨𝑢, 𝑣⟩ is continuous at any 𝑢0 ∈ H ,
and therefore is continuous on H . □
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A Hilbert space H is called separable if it contains a countable dense subset. In this
thesis, unless stated otherwise, any involved Hilbert space is assumed to be separable.

If H1,H2 are two Hilbert spaces, there is a natural Hilbert space structure on the
cartesian product H1 ×H2 [21, section 2.6], with the inner product defined as

⟨(𝑢1, 𝑢2), (𝑣1, 𝑣2)⟩H1×H2
··= ⟨𝑢1, 𝑣1⟩H1 + ⟨𝑢2, 𝑣2⟩H2

for any 𝑢1, 𝑣1 ∈ H1, 𝑢2, 𝑣2 ∈ H2. We call (H1×H2, ⟨·, ·⟩H1×H2) the direct sum of H1 and
H2, and we denote this space H1 ⊕ H2. The norm induced by the above inner product
is

∥(𝑢1, 𝑢2)∥H1⊕H2
··=

√︃
∥𝑢1∥2

H1
+ ∥𝑢2∥2

H2
, 𝑢1 ∈ H1, 𝑢2 ∈ H2.

It is useful to observe that for any 𝑢1 ∈ H1, 𝑢2 ∈ H2, we have the inequalities
1
√

2
(∥𝑢1∥H1 + ∥𝑢2∥H2) ≤ ∥(𝑢1, 𝑢2)∥H1⊕H2 ≤ ∥𝑢1∥H1 + ∥𝑢2∥H2 .

The first one is a consequence of the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), 𝑎, 𝑏 ≥ 0, while
the second follows from 𝑎2 + 𝑏2 ≤ (𝑎 + 𝑏)2, also valid for 𝑎, 𝑏 ≥ 0.

Now, if 𝐴1 ∈ B(H1), 𝐴2 ∈ B(H2), we may define a linear operator 𝐶 on H1 ⊕ H2
by the formula

𝐶(𝑢1, 𝑢2) ··= (𝐴𝑢1, 𝐵𝑢2), 𝑢1 ∈ H1, 𝑢2 ∈ H2.

We claim that ∥𝐶∥ = max(∥𝐴∥, ∥𝐵∥).

Proof. Let 𝑐 ··= max(∥𝐴∥, ∥𝐵∥). For any 𝑢1 ∈ H1, 𝑢2 ∈ H2, we have

∥𝐶(𝑢1, 𝑢2)∥2
H1⊕H2

= ∥(𝐴𝑢1, 𝐵𝑢2)∥2
H1⊕H2

= ∥𝐴𝑢1∥2
H1

+ ∥𝐵𝑢2∥2
H2

≤ ∥𝐴∥2∥𝑢1∥2
H1

+ ∥𝐵∥2∥𝑢2∥2
H2

≤ 𝑐2∥𝑢1∥2
H1

+ 𝑐2∥𝑢2∥2
H2

= 𝑐2∥(𝑢1, 𝑢2)∥2
H1⊕H2

whence ∥𝐶∥ ≤ 𝑐. On the other hand, by definition of ∥𝐶∥, we have

∥𝐶∥ ≥ sup
𝑢1≠0

∥𝐶(𝑢1, 0)∥H1⊕H2

∥(𝑢1, 0)∥H1⊕H2

= sup
𝑢1≠0

∥(𝐴𝑢1, 0)∥H1⊕H2

∥(𝑢1, 0)∥H1⊕H2

= sup
𝑢1≠0

∥𝐴𝑢1∥H1

∥𝑢1∥H1

= ∥𝐴∥

and similarly ∥𝐶∥ ≥ ∥𝐵∥. This leads to ∥𝐶∥ ≥ 𝑐, and thus ∥𝐶∥ = 𝑐. □

By induction, these constructions extend to an arbitrary finite number of Hilbert
spaces H1, . . . ,H𝑛. With additional work, this can in fact be extended to an infinite
collection {H𝑛}𝑛∈ℕ of complex Hilbert spaces. More precisely, given such a collection,
the direct sum

⊕
𝑛∈ℕ

H𝑛 is the set

{
(𝑥𝑛)𝑛∈ℕ ∈

∏
𝑛∈ℕ

H𝑛 :
∑︁
𝑛∈ℕ

∥𝑥𝑛∥2
H𝑛

< ∞
}
⊂
∏
𝑛∈ℕ

H𝑛
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whose vector space structure over ℂ is given coordinatewise and equipped with the
norm

∥(𝑥𝑛)𝑛∈ℕ∥⊕
𝑛∈ℕ H𝑛

··=
√︄∑︁
𝑛∈ℕ

∥𝑥𝑛∥2
H𝑛
, (𝑥𝑛)𝑛∈ℕ ∈

⊕
𝑛∈ℕ

H𝑛.

This norm derives from the inner product on
⊕
𝑛∈ℕ

H𝑛 given by

⟨(𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ⟩⊕
𝑛∈ℕ H𝑛

··=
∑︁
𝑛∈ℕ

⟨𝑥𝑛, 𝑦𝑛⟩H𝑛
.

for all (𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ ∈
⊕
𝑛∈ℕ

H𝑛. The above series is well-defined, in fact even abso-

lutely convergent, thanks to Cauchy-Schwartz inequality, as∑︁
𝑛∈ℕ

|⟨𝑥𝑛, 𝑦𝑛⟩H𝑛
| ≤

∑︁
𝑛∈ℕ

∥𝑥𝑛∥H𝑛
∥𝑦𝑛∥H𝑛

≤
√︄∑︁
𝑛∈ℕ

∥𝑥𝑛∥2
H𝑛

√︄∑︁
𝑛∈ℕ

∥𝑦𝑛∥2
H𝑛

< ∞

for all (𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ ∈
⊕
𝑛∈ℕ

H𝑛.

This indeed gives rise to a complete normed space and as above if 𝑇𝑛 ∈ B(H𝑛) for
any 𝑛 ∈ ℕ, we may define a linear operator 𝑇 on the direct sum by setting

𝑇 (𝑥𝑛)𝑛∈ℕ ··= (𝑇𝑛𝑥𝑛)𝑛∈ℕ

and as in the case of two Hilbert spaces, we have

∥𝑇 ∥ = sup
𝑛∈ℕ

∥𝑇𝑛∥.

We refer to [21, section 2.6] for the proof of these two facts.
In the sequel we will also require several facts about orthonormal bases in Hilbert

spaces, for which the proofs can be found in [6, sections 1.4 and 1.5], or in [15, section
2.1].

First of all, a sequence (𝑒𝑛)𝑛∈ℕ in H is an orthonormal system if

⟨𝑒𝑖, 𝑒 𝑗⟩H =

{
1 if 𝑖 = 𝑗

0 otherwise

for any 𝑖, 𝑗 ∈ ℕ. It is furthermore a complete orthonomal system if the subspace

Vect((𝑒𝑛)𝑛∈ℕ) ··=
{ 𝑛∑︁
𝑘=0

𝜆𝑘𝑒𝑘 : 𝑛 ∈ ℕ, 𝜆0, . . . ,𝜆𝑛 ∈ ℂ

}
is dense in H . The Gram-Schmidt orthogonalization procedure, as described in [15],
proves then the following.
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Proposition. A Hilbert space H is separable if and only if it has a complete or-
thonormal system (𝑒𝑛)𝑛∈ℕ.

A sequence (𝑒𝑛)𝑛∈ℕ in H is called a basis if for all 𝑢 ∈ H , there exists a sequence
of complex numbers (𝜆𝑛)𝑛∈ℕ so that

𝑢 =
∑︁
𝑛∈ℕ

𝜆𝑛𝑒𝑛 ··= lim
𝑛→∞

𝑛∑︁
𝑘=0

𝜆𝑘𝑒𝑘.

A basis is said to be orthonormal if it is an orthonormal system. From the above
proposition, we deduce the next theorem.

Theorem. Any separable Hilbert space has an orthonormal basis. Moreover, an
orthonormal system (𝑒𝑛)𝑛∈ℕ is a basis if and only if

∥𝑢∥2 =
∑︁
𝑛∈ℕ

|⟨𝑢, 𝑒𝑛⟩|2

for all 𝑢 ∈ H .

This last identity is usually called the Parseval’s identity.
We can thus define the dimension of a separable Hilbert space H as the cardinality

of an orthonormal basis of H . This is a well-defined quantity, since any two bases of
a Hilbert space have the same cardinality [6, proposition 1.4.14]. It follows from the
previous results that for infinite dimensional Hilbert spaces, separability is equivalent
to have countable dimension [6, theorem 1.4.16].

Finally, if (H1, ⟨·, ·⟩H1), (H2, ⟨·, ·⟩H2) are two Hilbert spaces, a map

𝑇 : (H1, ⟨·, ·⟩H1) −→ (H2, ⟨·, ·⟩H2)

is a unitary equivalence if it is a linear homeomorphism so that

⟨𝑇𝑢,𝑇𝑣⟩H2 = ⟨𝑢, 𝑣⟩H1

for all 𝑢, 𝑣 ∈ (H1, ⟨·, ·⟩H1).
Theorem. If H1 and H2 are two separable infinite dimensional Hilbert spaces,

there exists a unitary equivalence 𝑇 : H1 −→ H2.

1.1 Linear operators and their adjoints

Fix, for the rest of this chapter, a complex Hilbert space H with a hermitian inner
product ⟨·, ·⟩H and the induced norm ∥ · ∥H =

√︁
⟨·, ·⟩H .

When no confusion is possible we will drop the index H from the inner product or
the norm.
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Definition 1.1. Let 𝐴 ∈ B(H).
Its kernel and its image (or range) are defined as

Ker(𝐴) ··= {𝑢 ∈ H : 𝐴𝑢 = 0}, Im(𝐴) ··= {𝐴𝑢 : 𝑢 ∈ H}.

Those are vector subspaces of H , and Ker(𝐴) ⊂ H is closed.
Furthermore, an operator 𝐴 is invertible if there is a bounded operator 𝐵 : H −→

H so that 𝐴𝐵 = 𝐵𝐴 = IdH , or equivalently if Ker(𝐴) = {0} and Im(𝐴) = H . We will
write Aut(H) for the set of bounded invertible linear operators on H . It is not a vector
subspace of B(H), because the zero operator is not invertible. Nonetheless, note that
if 𝐴, 𝐵 ∈ Aut(H), then 𝐴𝐵 ∈ Aut(H) with

(𝐴𝐵)−1 = 𝐵−1𝐴−1

and also, when it exists, the inverse of a bounded linear operator is bounded(1). Thus
Aut(H) is a group with respect to composition of operators.

Our first proposition is a useful criteria to determine whether an operator is in-
vertible or not.

Proposition 1.2. Let 𝐴 ∈ B(H). Then 𝐴 is invertible if and only if Im(𝐴) is
dense in H and there exists 𝐶 > 0 so that ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ for all 𝑢 ∈ H .

Proof. To start, suppose that 𝐴 is invertible. Then Im(𝐴) = H is dense in H , and
moreover

∥𝑢∥ = ∥𝐴−1𝐴𝑢∥ ≤ ∥𝐴−1∥∥𝐴𝑢∥
for any 𝑢 ∈ H . Hence the second condition holds with 𝐶 ··= 1

∥𝐴−1∥ > 0.
Conversely, observe that the existence of 𝐶 > 0 forces Ker(𝐴) = {0}, because if

𝑢 ≠ 0, then ∥𝑢∥ > 0 and it follows ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ > 0, so 𝐴𝑢 ≠ 0. Now if (𝐴𝑢𝑛)𝑛∈ℕ is
a sequence in Im(𝐴) converging to 𝑣 ∈ H , it is a Cauchy sequence and, for 𝑛, 𝑚 ∈ ℕ,
the inequality

∥𝑢𝑛 − 𝑢𝑚∥ ≤ 𝐶∥𝐴(𝑢𝑛 − 𝑢𝑚)∥ = 𝐶∥𝐴𝑢𝑛 − 𝐴𝑢𝑚∥
shows that (𝑢𝑛)𝑛∈ℕ is also Cauchy, and therefore converges to some 𝑢 ∈ H by com-
pleteness. The continuity of 𝐴 provides then

𝑣 = lim
𝑛→∞

𝐴𝑢𝑛 = 𝐴( lim
𝑛→∞

𝑢𝑛) = 𝐴𝑢 ∈ Im(𝐴).

We deduce that Im(𝐴) is closed, i.e. Im(𝐴) = Im(𝐴). As Im(𝐴) is also dense by
assumption, we conclude that Im(𝐴) = Im(𝐴) = H , and 𝐴 is invertible. □

The next result will also be of great help.
(1)This is a consequence of the open mapping theorem, a standard result in functional analysis. See

for instance [3, theorem 2.2.1], [6, theorem 12.1], or [15, theorem 9.2.1].
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Lemma 1.3. Let 𝐴 ∈ B(H). The following are equivalent.

(i) 𝐴 = 0.

(ii) ⟨𝐴𝑢, 𝑣⟩ = 0 for all 𝑢, 𝑣 ∈ H .

(iii) ⟨𝐴𝑢, 𝑢⟩ = 0 for all 𝑢 ∈ H .

Proof. (i) =⇒ (ii) is immediate, and (ii) =⇒ (iii) follows by putting 𝑣 = 𝑢 in (ii).
(iii) =⇒ (ii) : Let 𝑢, 𝑣 ∈ H and 𝜆 ∈ ℂ. Applying (iii) with 𝑢 + 𝜆𝑣 yields to

0 = ⟨𝐴(𝑢 + 𝜆𝑣), 𝑢 + 𝜆𝑣⟩ = 𝜆⟨𝐴𝑣, 𝑢⟩ + 𝜆⟨𝐴𝑢, 𝑣⟩.
In particular, using 𝜆 = 1 and 𝜆 = 𝑖 we have ⟨𝐴𝑣, 𝑢⟩ = −⟨𝐴𝑢, 𝑣⟩ and ⟨𝐴𝑣, 𝑢⟩ = ⟨𝐴𝑢, 𝑣⟩
for all 𝑢, 𝑣 ∈ H . This proves ⟨𝐴𝑢, 𝑣⟩ = 0 for all 𝑢, 𝑣 ∈ H , and (ii) holds.
(ii) =⇒ (i) : Fix 𝑢 ∈ H . Using (ii) with 𝑣 = 𝐴𝑢 gives ∥𝐴𝑢∥2 = ⟨𝐴𝑢, 𝐴𝑢⟩ = 0, so 𝐴𝑢 = 0.
As 𝑢 ∈ H was arbitrary, 𝐴 = 0. □

For a given bounded operator 𝐴 : H −→ H , let 𝑣 ∈ H , and consider the linear
functional

𝜑𝑣 : H −→ ℂ, 𝜑𝑣(𝑢) ··= ⟨𝐴𝑢, 𝑣⟩.
The Cauchy-Schwarz inequality implies that 𝜑𝑣 is bounded, and the Riesz represen-
tation theorem ([3, theorem 1.4.4], [6, theorem 1.3.4], [13, Theorem A.3]) guarantees
the existence and the uniqueness of an element 𝐴∗𝑣 ∈ H , depending on 𝑣, so that

⟨𝐴𝑢, 𝑣⟩ = 𝜑𝑣(𝑢) = ⟨𝑢, 𝐴∗𝑣⟩
for all 𝑢 ∈ H and ∥𝜑𝑣∥ = ∥𝐴∗𝑣∥.

This defines a map 𝐴∗ : H −→ H which is linear, as for any 𝑣1, 𝑣2 ∈ H and any
𝜆 ∈ ℂ, we have

⟨𝐴𝑢, 𝑣1 + 𝜆𝑣2⟩ = ⟨𝐴𝑢, 𝑣1⟩ + 𝜆⟨𝐴𝑢, 𝑣2⟩
= ⟨𝑢, 𝐴∗𝑣1⟩ + 𝜆⟨𝑢, 𝐴∗𝑣2⟩
= ⟨𝑢, 𝐴∗𝑣1 + 𝜆𝐴∗𝑣2⟩

for all 𝑢 ∈ H . Thus, by uniqueness, 𝐴∗(𝑣1 + 𝜆𝑣2) = 𝐴∗𝑣1 + 𝜆𝐴∗𝑣2, and 𝐴∗ is linear.
Moreover, 𝐴∗ is bounded as

∥𝐴∗𝑣∥ = ∥𝜑𝑣∥
= sup

∥𝑢∥≤1
|⟨𝐴𝑢, 𝑣⟩|

≤ sup
∥𝑢∥≤1

∥𝐴∥∥𝑢∥∥𝑣∥

≤ ∥𝐴∥∥𝑣∥
for all 𝑣 ∈ H , by the Cauchy-Schwarz inequality. Hence ∥𝐴∗∥ ≤ ∥𝐴∥.

We have thus proved the result below.
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Theorem 1.4. Let 𝐴 ∈ B(H).
There exists a unique bounded linear operator 𝐴∗ : H −→ H so that

⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴∗𝑣⟩

for all 𝑢, 𝑣 ∈ H . Moreover, ∥𝐴∗∥ ≤ ∥𝐴∥.

The operator 𝐴∗ is called the adjoint of 𝐴. Here are several basic properties for
computing adjoints.

Proposition 1.5. (i) Id∗
H = IdH , and (𝐴∗)∗ = 𝐴 for all 𝐴 ∈ B(H).

(ii) (𝐴 + 𝜆𝐵)∗ = 𝐴∗ + 𝜆𝐵∗ for all 𝐴, 𝐵 ∈ B(H) and 𝜆 ∈ ℂ.

(iii) (𝐴𝐵)∗ = 𝐵∗𝐴∗ for all 𝐴, 𝐵 ∈ B(H).

(iv) ∥𝐴∗∥ = ∥𝐴∥, and ∥𝐴∗𝐴∥ = ∥𝐴𝐴∗∥ = ∥𝐴∥2 for all 𝐴 ∈ B(H).

Proof. (i) For any 𝑢, 𝑣 ∈ H , we have ⟨𝑢, IdH (𝑣)⟩ = ⟨𝑢, 𝑣⟩ = ⟨IdH (𝑢), 𝑣⟩, so necessarily
Id∗

H = IdH . In the same way, if 𝐴 ∈ B(H), we compute that

⟨𝑢, 𝐴𝑣⟩ = ⟨𝐴𝑣, 𝑢⟩ = ⟨𝑣, 𝐴∗𝑢⟩ = ⟨𝐴∗𝑢, 𝑣⟩

for all 𝑢, 𝑣 ∈ H , which implies 𝐴 = (𝐴∗)∗.
(ii) Fix 𝑢, 𝑣 ∈ H , and observe that

⟨𝑢, (𝐴∗ + 𝜆𝐵∗)𝑣⟩ = ⟨𝑢, 𝐴∗𝑣⟩ + 𝜆⟨𝑢, 𝐵∗𝑣⟩ = ⟨𝐴𝑢, 𝑣⟩ + 𝜆⟨𝐵𝑢, 𝑣⟩ = ⟨(𝐴 + 𝜆𝐵)𝑢, 𝑣⟩

using properties of the inner product. Therefore, 𝐴∗ + 𝜆𝐵∗ = (𝐴 + 𝜆𝐵)∗.
(iii) Here again, we have

⟨𝑢, 𝐵∗(𝐴∗𝑣)⟩ = ⟨𝐵𝑢, 𝐴∗𝑣⟩ = ⟨(𝐴𝐵)𝑢, 𝑣⟩

for all 𝑢, 𝑣 ∈ H , implying (𝐴𝐵)∗ = 𝐵∗𝐴∗.
(iv) We already know ∥𝐴∗∥ ≤ ∥𝐴∥. On the other hand, the same inequality with 𝐴∗

instead of 𝐴 provides
∥(𝐴∗)∗∥ ≤ ∥𝐴∗∥

so by (i) we get in fact ∥𝐴∥ ≤ ∥𝐴∗∥. Henceforth, ∥𝐴∗∥ = ∥𝐴∥.
For the last claim, let 𝑢 ∈ H with ∥𝑢∥ = 1. The definition of the operator norm

provides
∥𝐴∗𝐴𝑢∥ ≤ ∥𝐴∗∥∥𝐴𝑢∥ ≤ ∥𝐴∗∥∥𝐴∥∥𝑢∥ = ∥𝐴∥2
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using ∥𝐴∗∥ = ∥𝐴∥ in the last step. On the other hand, an application of Cauchy-
Schwarz inequality shows that

∥𝐴𝑢∥2 = ⟨𝐴𝑢, 𝐴𝑢⟩ = ⟨𝑢, 𝐴∗𝐴𝑢⟩ ≤ ∥𝐴∗𝐴𝑢∥ ≤ ∥𝐴∗𝐴∥

providing the other bound ∥𝐴∥2 ≤ ∥𝐴∗𝐴∥. We deduce that ∥𝐴∗𝐴∥ = ∥𝐴∥2. Applying
this equality to 𝐴∗ rather than 𝐴 and using that ∥𝐴∗∥ = ∥𝐴∥, one obtains also ∥𝐴𝐴∗∥ =
∥𝐴∥2 as wished. □

A unital 𝐶∗−algebra is a unital algebra(2) A over a field 𝐾 equipped with a norm
∥ · ∥A and an anti-linear map ·∗ : A −→ A, 𝑎 ↦−→ 𝑎∗, which satisfy the following
properties:

(i) (1A)∗ = 1A and (𝑎𝑏)∗ = 𝑏∗𝑎∗ for all 𝑎, 𝑏 ∈ A.

(ii) (Involutivity) (𝑎∗)∗ = 𝑎 for all 𝑎 ∈ A.

(iii) (Submultiplicativity) ∥𝑎𝑏∥A ≤ ∥𝑎∥A ∥𝑏∥A for all 𝑎, 𝑏 ∈ A.

(iv) (𝐶∗−identity) ∥𝑎𝑎∗∥A = ∥𝑎∗𝑎∥A = ∥𝑎∥2
A for all 𝑎 ∈ A.

(v) (Completeness) (A, ∥ · ∥A) is complete.

Note that if (A, ∥ · ∥A) is a 𝐶∗−algebra, we necessarily have ∥𝑎∗∥A = ∥𝑎∥A for all
𝑎 ∈ A. Indeed, this equality clearly holds if 𝑎 = 0, and if 𝑎 ≠ 0 we have

∥𝑎∥2
A = ∥𝑎𝑎∗∥A ≤ ∥𝑎∥A ∥𝑎∗∥A

and dividing through by ∥𝑎∥A ≠ 0, one gets ∥𝑎∥A ≤ ∥𝑎∗∥A . Applying this inequality
with 𝑎∗ rather than 𝑎 provides ∥𝑎∗∥A ≤ ∥𝑎∥A , whence ∥𝑎∥A = ∥𝑎∗∥A for all 𝑎 ∈ A.
In particular, the involution map is continuous on A, as if 𝜀 > 0 is fixed, choose
𝛿 ··= 𝜀 > 0, and note that if 𝑎, 𝑏 ∈ A are so that ∥𝑎 − 𝑏∥A < 𝛿, then

∥𝑎∗ − 𝑏∗∥A = ∥(𝑎 − 𝑏)∗∥A = ∥𝑎 − 𝑏∥A < 𝛿 = 𝜀.

Proposition 1.5, and the previous results, exactly say that B(H) is a 𝐶∗−algebra,
for the involution sending any 𝐴 ∈ B(H) to its adjoint 𝐴∗ ∈ B(H).

In the sequel, we will not go through the theory of 𝐶∗−algebras, and we formulate
all our definitions and results in B(H). However almost all the theory we develop
can be, with slight modifications and small additional precautions, formulated in the
more general setting of an arbitrary 𝐶∗−algebra, in particular the concepts of spec-
trum, spectral radius, and the functional calculus for self-adjoint elements. For more
background and details on this general setup, see e.g. [3, section 5.4.1], [6, chapter
VIII].

Let us then return to B(H). Because of the relation characterizing the adjoint of
an operator, we have the following equalities.

(2)If 𝐾 is a field, an algebra over 𝐾 is a 𝐾−vector space A with a bilinear map × : A × A −→ A,
so that (𝜆𝑎) × (𝜇𝑏) = (𝜆𝜇) (𝑎 × 𝑏) for all 𝑎, 𝑏 ∈ A,𝜆, 𝜇 ∈ 𝐾 . Furthermore, if there exists an element
1A ∈ A so that 1A × 𝑎 = 𝑎 × 1A = 𝑎 for all 𝑎 ∈ A, A is called unital.
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Lemma 1.6. Let 𝐴 ∈ B(H). Then Ker(𝐴∗) = Im(𝐴)⊥ and Ker(𝐴) = Im(𝐴∗)⊥.
In particular, if 𝐴 is invertible, then 𝐴∗ is invertible and (𝐴∗)−1 = (𝐴−1)∗.

Proof. First, suppose that 𝑣 ∈ Ker(𝐴∗), and fix 𝑢 ∈ H . Then ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴∗𝑣⟩ =

⟨𝑢, 0⟩ = 0 so 𝑣 ∈ Im(𝐴)⊥. Conversely, if 𝑣 ∈ Im(𝐴)⊥, then we compute that

∥𝐴∗𝑣∥2 = ⟨𝐴∗𝑣, 𝐴∗𝑣⟩ = ⟨𝐴𝐴∗𝑣, 𝑣⟩ = 0

which implies 𝐴∗𝑣 = 0, so 𝑣 ∈ Ker(𝐴∗). Hence Ker(𝐴∗) = Im(𝐴)⊥. Applying this to 𝐴∗

rather than 𝐴 and using (𝐴∗)∗ = 𝐴, we deduce the second equality.
For the last claim, assume that 𝐴 is invertible. We establish that (𝐴−1)∗𝐴∗ =

𝐴∗(𝐴−1)∗ = IdH , which shows at the same time that 𝐴∗ is invertible and that its
inverse is (𝐴−1)∗. To start, note that

⟨(𝐴−1)∗𝐴∗𝑢, 𝑣⟩ = ⟨𝐴∗𝑢, 𝐴−1𝑣⟩ = ⟨𝑢, 𝐴𝐴−1𝑣⟩ = ⟨𝑢, 𝑣⟩

for any 𝑢, 𝑣 ∈ H . Likewise, ⟨𝐴∗(𝐴−1)∗𝑢, 𝑣⟩ = ⟨(𝐴−1)∗𝑢, 𝐴𝑣⟩ = ⟨𝑢, 𝐴−1𝐴𝑣⟩ = ⟨𝑢, 𝑣⟩ for
any 𝑢, 𝑣 ∈ H . Hence, one gets

⟨((𝐴−1)∗𝐴∗ − IdH )𝑢, 𝑣⟩ = ⟨(𝐴∗(𝐴−1)∗ − IdH )𝑢, 𝑣⟩ = 0

for all 𝑢, 𝑣 ∈ H , and Lemma 1.3 implies that (𝐴−1)∗𝐴∗ = 𝐴∗(𝐴−1)∗ = IdH . We conclude
that 𝐴∗ is invertible, with inverse (𝐴∗)−1 = (𝐴−1)∗. □

1.2 Several classes of operators

In this part we introduce different types of operators, and study the properties they
carry.

Definition 1.7. We say that an operator 𝐴 ∈ B(H) is

(i) normal if 𝐴∗𝐴 = 𝐴𝐴∗.

(ii) unitary if 𝐴∗𝐴 = 𝐴𝐴∗ = IdH .

(iii) self-adjoint (or hermitian) if 𝐴∗ = 𝐴.

(iv) positive if ⟨𝐴𝑢, 𝑢⟩ ≥ 0 for any 𝑢 ∈ H .

(v) isometric if ⟨𝐴𝑢, 𝐴𝑣⟩ = ⟨𝑢, 𝑣⟩ for any 𝑢, 𝑣 ∈ H .

Additionally, we call an operator 𝐴 ∈ B(H) negative if −𝐴 is positive.
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In the sequel, we write S(H) ⊂ B(H) for the set of self-adjoint operators on H . It
is closed in B(H) for the norm-topology. Indeed if (𝐴𝑛)𝑛∈ℕ is a sequence of self-adjoint
operators converging to 𝐴 ∈ B(H) in norm, then

∥𝐴 − 𝐴∗∥ = ∥𝐴 − 𝐴𝑛 + 𝐴𝑛 − 𝐴∗∥
≤ ∥𝐴 − 𝐴𝑛∥ + ∥𝐴∗

𝑛 − 𝐴∗∥
= 2∥𝐴 − 𝐴𝑛∥

for all 𝑛 ∈ ℕ, using the triangle inequality, the fact that 𝐴∗
𝑛 = 𝐴𝑛 for all 𝑛 ∈ ℕ and

Proposition 1.5 for the last equality. Since ∥𝐴 − 𝐴𝑛∥ −→ 0 as 𝑛 → ∞, we see that
∥𝐴 − 𝐴∗∥ = 0, so 𝐴 = 𝐴∗.

Likewise, U(H) stands for the set of unitary operators. It is a group with respect
to composition.

Finally, B(H)+ will denote the set of positive operators on H , while P(H)(3) will
denote the set of positive invertible operators on H .

Let us provide simple examples to illustrate Definition 1.7.

Example 1.8. (i) A bounded linear operator on a finite-dimensional Hilbert space is a
matrix 𝐴 of size dimℂ(H)×dimℂ(H) with complex coefficients 𝑎𝑖 𝑗, 1 ≤ 𝑖, 𝑗 ≤ dimℂ(H).
It is straightforward to check that 𝐴 is self-adjoint if and only if 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 for all 1 ≤
𝑖 ≤ 𝑗 ≤ dimℂ(H).
(ii) Let 𝐴 be the operator on 𝐿2( [0, 1]) defined by (𝐴𝑢) (𝑡) = 𝑡𝑢(𝑡), 𝑡 ∈ [0, 1]. First of
all, we have

∥𝐴𝑢∥2
2 =

∫ 1

0
𝑡2 |𝑢(𝑡) |2 d𝑡 ≤ ∥𝑢∥2

2

for all 𝑢 ∈ 𝐿2( [0, 1]), whence ∥𝐴∥ ≤ 1 and 𝐴 is bounded. Additionally, we have

⟨𝐴𝑢, 𝑢⟩ =
∫ 1

0
𝑡𝑢(𝑡)𝑢(𝑡) d𝑡 =

∫ 1

0
𝑡 |𝑢(𝑡) |2 d𝑡 ≥ 0

for any 𝑢 ∈ 𝐿2( [0, 1]), so 𝐴 is positive, in particular self-adjoint and normal. However,
it is not an isometry since for 𝑢(𝑡) = 𝑣(𝑡) = 1, 𝑡 ∈ [0, 1], we have ⟨𝐴𝑢, 𝐴𝑣⟩ = 1

3 while
⟨𝑢, 𝑣⟩ = 1.
(iii) Consider the left shift operator on ℓ 2(ℕ), defined by (𝐴𝑢)𝑛 = 𝑢𝑛+1, 𝑛 ∈ ℕ, for all
𝑢 = (𝑢𝑛)𝑛∈ℕ ∈ ℓ 2(ℕ). We see that

∥𝐴𝑢∥2
2 = ∥𝑢∥2

2 − |𝑢0 |2 ≤ ∥𝑢∥2
2

for all 𝑢 ∈ ℓ 2(ℕ), so 𝐴 is bounded and ∥𝐴∥ ≤ 1. Moreover the inequality ∥𝐴𝑢∥2
2 ≤ ∥𝑢∥2

2
is an equality if we choose any 𝑢 ∈ ℓ 2(ℕ) with 𝑢0 = 0, whence in fact ∥𝐴∥ = 1. It is not
an isometry since for 𝑢 = (1, 1, 0, 0, . . . ) we have ∥𝑢∥2 = 2 while ⟨𝐴𝑢, 𝐴𝑢⟩ = ∥𝐴𝑢∥2 = 1.
The computation

⟨𝐴𝑢, 𝑣⟩ =
∑︁
𝑛∈ℕ

(𝐴𝑢)𝑛𝑣𝑛

(3)In particular, this has not to be confused with Ps(H), the set of all subsets of H .

26



Master thesis 1.2 Several classes of operators

=
∑︁
𝑛∈ℕ

𝑢𝑛+1𝑣𝑛

=
∑︁
𝑛≥1

𝑢𝑛𝑣𝑛−1

valid for all 𝑢, 𝑣 ∈ ℓ 2(ℕ), shows that the adjoint 𝐴∗ of 𝐴 is the right shift on ℓ 2(ℕ),
defined by (𝐴∗𝑢)0 = 0 and (𝐴∗𝑢)𝑛 = 𝑢𝑛−1, 𝑛 ≥ 1. In particular 𝐴 is not self-adjoint.
(iv) If 𝐴 ∈ B(H), the operator 𝐴∗𝐴 is bounded and positive. Indeed, for 𝑢 ∈ H , we
compute that

⟨𝐴∗𝐴𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝐴𝑢⟩ = ∥𝐴𝑢∥2 ≥ 0.
The same reasoning shows that 𝐴𝐴∗ is positive as well. We will see below that in fact
all positive operators arise in this form.
(v) If 𝐴 ∈ B(H) is positive and invertible, then 𝐴−1 is positive as well. Indeed, fix
𝑢 ∈ H , and write it as 𝑢 = 𝐴𝑣 for some 𝑣 ∈ H . Then

⟨𝐴−1𝑢, 𝑢⟩ = ⟨𝑣, 𝐴𝑣⟩ = ⟨𝐴𝑣, 𝑣⟩
and this last inner product is positive since 𝐴 is positive.
(vi) If 𝐴, 𝐵 ∈ B(H) are both positive, and if 𝐴𝐵 = 𝐵𝐴, then 𝐴𝐵 is positive. We refer
to [12, theorem 4.6.9], [15, lemma 6.3.4] for a proof of this fact.
(vii) If 𝐴, 𝐵 ∈ B(H) are self-adjoint and 𝐴𝐵 = 𝐵𝐴, then 𝐴𝐵 is self-adjoint, as

(𝐴𝐵)∗ = 𝐵∗𝐴∗ = 𝐵𝐴 = 𝐴𝐵.

In particular, if 𝐴 ∈ B(H) is self-adjoint, so are all its powers 𝐴𝑛, 𝑛 ∈ ℕ.

Let us now reformulate each of these definitions with the norm.

Proposition 1.9. Let 𝐴 ∈ B(H). The following properties hold.

(i) 𝐴 is normal if and only if ∥𝐴𝑢∥ = ∥𝐴∗𝑢∥ for any 𝑢 ∈ H .

(ii) 𝐴 is unitary if and only if ∥𝐴𝑢∥ = ∥𝐴∗𝑢∥ = ∥𝑢∥ for any 𝑢 ∈ H .

(iii) 𝐴 is self-adjoint if and only if ⟨𝐴𝑢, 𝑢⟩ ∈ ℝ for any 𝑢 ∈ H .

(iv) 𝐴 is an isometry if and only if ∥𝐴𝑢∥ = ∥𝑢∥ for any 𝑢 ∈ H , and if and only
if 𝐴∗𝐴 = IdH .

Proof. (i) To start, note that

∥𝐴𝑢∥2 − ∥𝐴∗𝑢∥2 = ⟨𝐴∗𝐴𝑢, 𝑢⟩ − ⟨𝐴𝐴∗𝑢, 𝑢⟩ = ⟨(𝐴∗𝐴 − 𝐴𝐴∗)𝑢, 𝑢⟩ (1)

holds for any 𝑢 ∈ H . If 𝐴 is normal, 𝐴∗𝐴 − 𝐴𝐴∗ = 0 so the right hand side of (1)
vanishes, and we get indeed ∥𝐴𝑢∥ = ∥𝐴∗𝑢∥ for any 𝑢 ∈ H . Conversely, if this equality
holds, we deduce

⟨(𝐴∗𝐴 − 𝐴𝐴∗)𝑢, 𝑢⟩ = 0
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for any 𝑢 ∈ H . Lemma 1.3 then implies that 𝐴∗𝐴 − 𝐴𝐴∗ = 0, so 𝐴 is normal.
(iii) If 𝐴 is self-adjoint, we compute that

⟨𝐴𝑢, 𝑢⟩ = ⟨𝑢, 𝐴𝑢⟩ = ⟨𝑢, 𝐴∗𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩

so ⟨𝐴𝑢, 𝑢⟩ ∈ ℝ for any 𝑢 ∈ H . Conversely, if this condition holds, then

⟨𝐴∗𝑢, 𝑢⟩ = ⟨𝑢, 𝐴𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩

so ⟨(𝐴∗ − 𝐴)𝑢, 𝑢⟩ = 0 for any 𝑢 ∈ H , and as above Lemma 1.3 gives the conclusion.
(iv) First of all, suppose that 𝐴 preserves the inner product. It implies that ∥𝐴𝑢∥2 =

⟨𝐴𝑢, 𝐴𝑢⟩ = ⟨𝑢, 𝑢⟩ = ∥𝑢∥2 for any 𝑢 ∈ H , so 𝐴 preserves the norm as well. On the
other hand, if 𝐴 preserves the norm and 𝑢, 𝑣 ∈ H , one has

⟨𝐴𝑢, 𝐴𝑣⟩ = 1
4
(∥𝐴(𝑢 + 𝑣)∥2 − ∥𝐴(𝑢 − 𝑣)∥2 + 𝑖∥𝐴(𝑢 + 𝑖𝑣)∥2 − 𝑖∥𝐴(𝑢 − 𝑖𝑣)∥2)

=
1
4
(∥𝑢 + 𝑣∥2 − ∥𝑢 − 𝑣∥2 + 𝑖∥𝑢 + 𝑖𝑣∥2 − 𝑖∥𝑢 − 𝑖𝑣∥2)

= ⟨𝑢, 𝑣⟩

for any 𝑢, 𝑣 ∈ H . The first (and third) equality relies on the so-called polarization
identity(4), valid in any pre-Hilbert space. This shows that 𝐴 is an isometry, and con-
cludes the proof of the first equivalence. To prove the second, as for (i) we first note
that

∥𝐴𝑢∥2 − ∥𝑢∥2 = ⟨𝐴𝑢, 𝐴𝑢⟩ − ⟨𝑢, 𝑢⟩ = ⟨(𝐴∗𝐴 − IdH )𝑢, 𝑢⟩ (2)
for any 𝑢 ∈ H . If 𝐴∗𝐴 = IdH the right hand side of (2) equals 0, so ∥𝐴𝑢∥ = ∥𝑢∥ for any
𝑢 ∈ H . For the other direction, if 𝐴 preserves the norm, we get

⟨(𝐴∗𝐴 − IdH )𝑢, 𝑢⟩ = 0

for any 𝑢 ∈ H , and Lemma 1.3 provides 𝐴∗𝐴 = IdH .
(ii) This point is a combination of (i) and (iv). □

Note that in Definition 1.7, an isometric operator on H is not necessarily an isome-
try of the metric space (H , ∥ · ∥H ), as defined in Appendix A, because we do not require
the operator to be surjective. In fact it is not true that a bounded operator preserving
the inner product is surjective: consider for instance the right shift on ℓ 2(ℕ). It pre-
serves the inner product, but any sequence whose first coordinate is not 0 does not lie
in its image.

However, and we will use this in what follows, an invertible isometry is in fact
unitary, i.e. if 𝐴 ∈ B(H) is invertible and satisfies 𝐴∗𝐴 = IdH , then 𝐴𝐴∗ = IdH .
Indeed, the equality 𝐴∗𝐴 = IdH implies

𝐴∗(𝐴𝐴∗)𝐴 = (𝐴∗𝐴) (𝐴∗𝐴) = IdH = 𝐴∗𝐴

(4)This identity exactly states that 4⟨𝑢, 𝑣⟩ = ∥𝑢 + 𝑣∥2 − ∥𝑢 − 𝑣∥2 + 𝑖∥𝑢 + 𝑖𝑣∥2 − 𝑖∥𝑢 − 𝑖𝑣∥2, for any
𝑢, 𝑣 ∈ H . The best way of proving it is to directly expand the right-hand side.
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and multiplying this equality from the left with (𝐴∗)−1 (which exists because 𝐴 is
invertible, see Lemma 1.6) and from the right with 𝐴−1 provides 𝐴𝐴∗ = IdH , and thus
𝐴 is unitary. The same reasoning shows that an invertible operator 𝐴with 𝐴𝐴∗ = IdH
satisfies also 𝐴∗𝐴 = IdH .

For normal operators, Proposition 1.2 takes a simpler form.

Corollary 1.10. Let 𝐴 ∈ B(H) be normal. It holds that

(i) Ker(𝐴) = Ker(𝐴∗).

(ii) Im(𝐴) is dense in H if and only if 𝐴 is injective.

(iii) 𝐴 is invertible if and only if there exists 𝐶 > 0 so that ∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥ for
any 𝑢 ∈ H .

Proof. (i) Since 𝐴 is normal, ∥𝐴𝑢∥ = ∥𝐴∗𝑢∥ for any 𝑢 ∈ H by the previous proposition,
whence 𝑢 ∈ Ker(𝐴) if and only if 𝑢 ∈ Ker(𝐴∗).
(ii) By the orthogonal decomposition theorem ([3, corollary 1.4.6], [13, theorem A.2]),
the fact that (𝑉⊥)⊥ = 𝑉 (5) for any subspace 𝑉 ⊂ H and Lemma 1.6, we have

H = Ker(𝐴∗) ⊕ (Ker(𝐴∗))⊥ = Ker(𝐴∗) ⊕ (Im(𝐴)⊥)⊥ = Ker(𝐴∗) ⊕ Im(𝐴).

Point (i) of the present corollary now implies H = Ker(𝐴) ⊕ Im(𝐴), whence Im(𝐴) is
dense in H if and only if 𝐴 is injective.
(iii) If 𝐴 is invertible, it suffices to consider 𝐶 ··= 1

∥𝐴−1∥ > 0 and the inequality holds, as
seen in the proof of Proposition 1.2. Conversely, suppose there is 𝐶 > 0 so that

∥𝐴𝑢∥ ≥ 𝐶∥𝑢∥

for any 𝑢 ∈ H . Again by Proposition 1.2 it is enough to show that the image of 𝐴
is dense in H . By (ii) above, it is the same as proving that 𝐴 is injective, which is
a consequence of the assumption (as seen in the proof of Proposition 1.2). Thus 𝐴 is
invertible and we are done. □

1.3 Resolvent set, spectrum and spectral radius

The concept of spectrum for an operator generalizes that of eigenvalues for a finite
dimensional matrix, and is crucial for the study of the different classes introduced
above.

(5)To prove this, first note that (𝑉⊥)⊥ is a closed subset containing𝑉 , so it contains also𝑉 . Conversely,
fix 𝑣 ∈ (𝑉⊥)⊥ and write it as 𝑣 = 𝑣1+𝑣2, 𝑣1 ∈ 𝑉, 𝑣2 ∈ 𝑉⊥

(by [13, theorem A.2]). As 𝑉 ⊂ 𝑉 , it follows that
𝑉

⊥ ⊂ 𝑉⊥, so ⟨𝑣, 𝑣2⟩ = 0. Using linearity of the inner product and ⟨𝑣1, 𝑣2⟩ = 0, this reads as ⟨𝑣2, 𝑣2⟩ = 0.
Thus 𝑣2 = 0, and then 𝑣 = 𝑣1 ∈ 𝑉 , proving the inclusion (𝑉⊥)⊥ ⊂ 𝑉 .

29



Master thesis 1.3 Resolvent set, spectrum and spectral radius

Definition 1.11. Let 𝐴 ∈ B(H).
The resolvent set of 𝐴, denoted 𝜌(𝐴), is defined as

𝜌(𝐴) ··= {𝜆 ∈ ℂ : 𝐴 − 𝜆IdH is invertible}.

The spectrum of 𝐴 is 𝜎(𝐴) ··= ℂ \ 𝜌(𝐴).

Before looking at examples, we establish basic properties of the spectrum of an
operator.

Proposition 1.12. Let 𝐴 ∈ B(H).
If |𝜆 | > ∥𝐴∥, then 𝜆 ∈ 𝜌(𝐴). In particular, 𝜎(𝐴) ⊂ {𝜆 ∈ ℂ : |𝜆 | ≤ ∥𝐴∥}.

Proof. We start by proving the following claim: if 𝑆 ∈ B(H) has ∥𝑆∥ < 1, then IdH −𝑆
is invertible.

Indeed, suppose ∥𝑆∥ < 1, and let 𝑆𝑛 ··=
𝑛∑︁
𝑘=0

𝑆𝑘. Then for 𝑛, 𝑚 ∈ ℕ, 𝑛 ≥ 𝑚, one has

∥𝑆𝑛 − 𝑆𝑚∥ =
 𝑛∑︁
𝑘=𝑚+1

𝑆𝑘
 ≤ 𝑛∑︁

𝑘=𝑚+1
∥𝑆∥𝑘

using the triangle inequality and the submultiplicativity of the norm. The right-hand
side is the rest of a convergent series, since ∥𝑆∥ < 1. We thus see that ∥𝑆𝑛−𝑆𝑚∥ −→ 0
as 𝑛, 𝑚 → ∞, i.e. (𝑆𝑛)𝑛∈ℕ is Cauchy in B(H). The latter being complete, (𝑆𝑛)𝑛∈ℕ
converges in B(H), and we call 𝑇 its limit. We compute then that

(IdH − 𝑆)𝑇 = lim
𝑛→∞

( 𝑛∑︁
𝑘=0

𝑆𝑘 −
𝑛∑︁
𝑘=0

𝑆𝑘+1
)
= lim
𝑛→∞

(IdH − 𝑆𝑛+1) = IdH

and similarly 𝑇 (IdH − 𝑆) = IdH . Hence IdH − 𝑆 is invertible and (IdH − 𝑆)−1 = 𝑇.
This claim implies directly the proposition, because if |𝜆 | > ∥𝐴∥, then ∥ 𝐴𝜆 ∥ < 1, so

IdH − 𝐴
𝜆 is invertible, and thus so is

−𝜆
(
IdH − 𝐴

𝜆

)
= 𝐴 − 𝜆IdH .

This implies that 𝜆 ∈ 𝜌(𝐴), and that 𝜎(𝐴) is contained in the closed disk of radius
∥𝐴∥ centered at the origin, finishing the proof. □

This result of boundedness for the spectrum motivates the next definition.
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Definition 1.13. Let 𝐴 ∈ B(H).
Its spectral radius, denoted 𝑟(𝐴), is defined as

𝑟(𝐴) ··= sup
𝜆∈𝜎(𝐴)

|𝜆 |.

In particular from Proposition 1.12 we directly get

𝑟(𝐴) ≤ ∥𝐴∥

for any 𝐴 ∈ B(H), i.e. the spectrum of 𝐴 ∈ B(H) is a bounded subset of the complex
plane.

Note also that, from Lemma 1.6, 𝐴−𝜆IdH is invertible if and only if (𝐴−𝜆IdH )∗ =
𝐴∗ − 𝜆IdH is invertible. This equivalence provides

𝜎(𝐴∗) = {𝜆 : 𝜆 ∈ 𝜎(𝐴)}

and in particular 𝑟(𝐴) = 𝑟(𝐴∗).
The next result, coupled with the boundedness of the spectrum, ensures that the

latter is always a compact subset of ℂ.

Proposition 1.14. Let 𝐴 ∈ B(H). Then 𝜎(𝐴) ⊂ ℂ is closed.

Proof. Let 𝜆 ∈ 𝜌(𝐴). For 𝜇 ∈ ℂ so that |𝜇−𝜆 | < 1
∥(𝐴−𝜆IdH)−1∥ , the operator (𝜇−𝜆) (𝐴−

𝜆IdH )−1 − IdH is invertible by the claim in the proof of Proposition 1.12, and since

𝐴 − 𝜇IdH = −(𝐴 − 𝜆IdH ) ((𝜇 − 𝜆) (𝐴 − 𝜆IdH )−1 − IdH )

we deduce that 𝐴 − 𝜇IdH is invertible. Thus 𝜌(𝐴) contains the open ball centered
at 𝜆 of radius 1

∥(𝐴−𝜆IdH)−1∥ , and as this holds for any 𝜆 ∈ 𝜌(𝐴), it is an open set. Its
complement 𝜎(𝐴) is therefore closed in ℂ. □

Let us provide a simple example of computation of spectrum.

Example 1.15. Consider the left shift on H = ℓ 2(ℕ), defined as

𝐴 : ℓ 2(ℕ) −→ ℓ 2(ℕ)
𝑢 = (𝑢𝑛)𝑛∈ℕ ↦−→ (𝑢𝑛+1)𝑛∈ℕ.

We have seen above (Example 1.8) that 𝐴 is bounded with ∥𝐴∥ = 1. Now fix 𝜆 ∈ ℂ
with |𝜆 | < 1, and consider 𝑢 ··= (1,𝜆,𝜆2,𝜆3, . . . ) ≠ 0. Then

∥𝑢∥2
2 =

∑︁
𝑛∈ℕ

|𝑢𝑛 |2 =
∑︁
𝑛∈ℕ

|𝜆 |2𝑛 < ∞
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as |𝜆 | < 1, so 𝑢 ∈ ℓ 2(ℕ), and moreover

𝐴𝑢 = (𝜆,𝜆2,𝜆3, . . . ) = 𝜆𝑢.

Thus any complex number in the open unit disk is an eigenvalue of 𝐴, and therefore
is in the spectrum of 𝐴:

{𝜆 ∈ ℂ : |𝜆 | < 1} ⊂ 𝜎(𝐴).
As 𝜎(𝐴) is closed in ℂ, it must also contain the closure of the open unit disk, which is
the closed unit disk. Hence {𝜆 ∈ ℂ : |𝜆 | ≤ 1} ⊂ 𝜎(𝐴). On the other hand, the reverse
inclusion holds by Proposition 1.12, as ∥𝐴∥ = 1. Hence we deduce

𝜎(𝐴) = {𝜆 ∈ ℂ : |𝜆 | ≤ 1}.

Here is how the spectrum behaves with respect to translation.

Lemma 1.16. Let 𝐴 ∈ B(H), and 𝛾 ∈ ℂ. Then one has

𝜎(𝐴 − 𝛾IdH ) = 𝜎(𝐴) − 𝛾

where 𝜎(𝐴) − 𝛾 ··= {𝜆 − 𝛾 : 𝜆 ∈ 𝜎(𝐴)}.

Proof. Straightforwardly we have the equivalences

𝑡 ∈ 𝜎(𝐴 − 𝛾IdH ) ⇐⇒ (𝐴 − 𝛾IdH ) − 𝑡IdH is not invertible
⇐⇒ 𝐴 − (𝛾 + 𝑡)IdH is not invertible
⇐⇒ 𝛾 + 𝑡 ∈ 𝜎(𝐴)
⇐⇒ 𝑡 ∈ 𝜎(𝐴) − 𝛾

whence the conclusion. □

In general, two arbitrary operators do not commute. However, if 𝐴, 𝐵 ∈ B(H), the
products 𝐴𝐵 and 𝐵𝐴 share the same non-zero spectral points.

Proposition 1.17. Let 𝐴, 𝐵 ∈ B(H). Then

𝜎(𝐴𝐵) \ {0} = 𝜎(𝐵𝐴) \ {0}

and, in particular, 𝑟(𝐴𝐵) = 𝑟(𝐵𝐴).

Proof. Let 𝜆 ∈ ℂ, 𝜆 ≠ 0. We must show that 𝐴𝐵 − 𝜆IdH is invertible if and only if
𝐵𝐴−𝜆IdH is invertible. First, we handle the case 𝜆 = 1. Suppose then that 𝐴𝐵− IdH
is invertible, and write 𝐶 for its inverse. Then

𝐶(𝐴𝐵 − IdH ) = IdH , (𝐴𝐵 − IdH )𝐶 = IdH
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and re-arranging gives 𝐶𝐴𝐵 = IdH + 𝐶 = 𝐴𝐵𝐶. It follows that

(𝐵𝐶𝐴 − IdH ) (𝐵𝐴 − IdH ) = 𝐵𝐶𝐴𝐵𝐴 − 𝐵𝐶𝐴 − 𝐵𝐴 + IdH
= 𝐵(IdH + 𝐶)𝐴 − 𝐵𝐶𝐴 − 𝐵𝐴 + IdH
= 𝐵𝐴 + 𝐵𝐶𝐴 − 𝐵𝐶𝐴 − 𝐵𝐴 + IdH
= IdH

and also

(𝐵𝐴 − IdH ) (𝐵𝐶𝐴 − IdH ) = 𝐵𝐴𝐵𝐶𝐴 − 𝐵𝐴 − 𝐵𝐶𝐴 + IdH
= 𝐵(IdH + 𝐶)𝐴 − 𝐵𝐴 − 𝐵𝐶𝐴 + IdH
= 𝐵𝐴 + 𝐵𝐶𝐴 − 𝐵𝐴 − 𝐵𝐶𝐴 + IdH
= IdH

proving that 𝐵𝐴 − IdH is invertible, of inverse

(𝐵𝐴 − IdH )−1 = 𝐵(𝐴𝐵 − IdH )−1𝐴 − IdH .

Exchanging the role of 𝐴 and 𝐵, we get the reverse implication. We now extend to
arbitrary 𝜆 ≠ 0, using that any scalar commutes with 𝐴, 𝐵 and the particular case we
just proved. Indeed

𝐴𝐵 − 𝜆IdH is invertible ⇐⇒
(

1
𝜆
𝐴

)
𝐵 − IdH is invertible

⇐⇒ 𝐵

(
1
𝜆
𝐴

)
− IdH is invertible

⇐⇒ (𝐵𝐴 − 𝜆IdH ) 1
𝜆

is invertible

⇐⇒ 𝐵𝐴 − 𝜆IdH is invertible.

Thus 𝜎(𝐴𝐵) \ {0} = 𝜎(𝐵𝐴) \ {0} and it immediately follows that 𝑟(𝐴𝐵) = 𝑟(𝐵𝐴). □

Now we provide alternative descriptions of points in the resolvent set, when the
operator in question is self-adjoint.

Lemma 1.18. Let 𝐴 ∈ B(H) be self-adjoint, and 𝜆 ∈ ℂ. The following are
equivalent.

(i) 𝜆 ∈ 𝜌(𝐴).

(ii) There exists 𝐶 > 0 so that ∥(𝐴 − 𝜆IdH )𝑢∥ ≥ 𝐶∥𝑢∥ for any 𝑢 ∈ H .

Proof. Suppose 𝐴 is self-adjoint, and 𝜆 ∈ ℂ. Then

(𝐴 − 𝜆IdH )∗(𝐴 − 𝜆IdH ) = (𝐴 − 𝜆IdH ) (𝐴 − 𝜆IdH )
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= 𝐴2 − 𝜆𝐴IdH − 𝜆IdH𝐴 − 𝜆𝜆IdH
= (𝐴 − 𝜆IdH ) (𝐴 − 𝜆IdH )∗

so 𝐴 − 𝜆IdH is normal. Now Corollary 1.10(iii) and the definition of 𝜌(𝐴) gives the
desired equivalence. □

Equivalently, 𝜆 ∈ 𝜎(𝐴) if and only if there exists a sequence (𝑢𝑛)𝑛∈ℕ ⊂ H so that
∥𝑢𝑛∥ = 1 for any 𝑛 ∈ ℕ and ∥(𝐴 − 𝜆IdH )𝑢𝑛∥ −→ 0 as 𝑛→ ∞.

This characterization allows us to get informations about the localization of the
spectrum of a self-adjoint or positive bounded operator.

Proposition 1.19. Let 𝐴 ∈ B(H). The following hold.

(i) If 𝐴 is self-adjoint, then 𝜎(𝐴) ⊂ ℝ.

(ii) If 𝐴 is positive, then 𝜎(𝐴) ⊂ [0,∞).

Proof. (i) Suppose that 𝐴 is self-adjoint. Let 𝜆 = 𝑎 + 𝑖𝑏 be a complex number with
𝑏 ≠ 0. Then one has

∥(𝐴 − 𝜆IdH )𝑢∥2 = ⟨(𝐴 − 𝜆IdH )𝑢, (𝐴 − 𝜆IdH )𝑢⟩
= ∥𝐴𝑢∥2 − (𝜆 + 𝜆)⟨𝐴𝑢, 𝑢⟩ + |𝜆 |2∥𝑢∥2

= ∥𝐴𝑢∥2 − 2𝑎⟨𝐴𝑢, 𝑢⟩ + 𝑎2∥𝑢∥2 + 𝑏2∥𝑢∥2

= ∥𝐴𝑢∥2 − 2Re⟨𝐴𝑢, 𝑎𝑢⟩ + ∥𝑎𝑢∥2 + 𝑏2∥𝑢∥2

= ∥𝐴𝑢 + 𝑎𝑢∥2 + 𝑏2∥𝑢∥2

≥ 𝑏2∥𝑢∥2

for any 𝑢 ∈ H . Lemma 1.18 then implies 𝜆 ∈ 𝜌(𝐴). Thus ℂ \ℝ ⊂ 𝜌(𝐴) = ℂ \ 𝜎(𝐴), so
𝜎(𝐴) ⊂ ℝ.
(ii) For the case of positive operators, we proceed in the same way. It just remains
to exclude negative numbers from the spectrum. Let then 𝜆 = 𝑎 < 0. Note that
−2𝑎⟨𝐴𝑢, 𝑢⟩ ≥ 0 for any 𝑢 ∈ H by positivity of 𝐴. Hence with the above computation,
we also have

∥(𝐴 − 𝜆IdH )𝑢∥2 = ∥𝐴𝑢∥2 − 2𝑎⟨𝐴𝑢, 𝑢⟩︸                    ︷︷                    ︸
≥0

+𝑎2∥𝑢∥2 ≥ 𝑎2∥𝑢∥2

for all 𝑢 ∈ H . Invoking again Lemma 1.18, we see that 𝜌(𝐴) also contains (−∞, 0),
and therefore 𝜎(𝐴) ⊂ [0,∞). □

Remark 1.20. From the definition of the spectrum, an operator 𝐴 ∈ B(H) is in-
vertible if and only 0 ∉ 𝜎(𝐴). It follows that, if 𝐴 is positive and invertible, then
𝜎(𝐴) ⊂ (0,∞). Additionally, since 𝜎(𝐴) is closed, it cannot contain points arbitrary
close to 0, so there must exist 𝜀 > 0 so that 𝜎(𝐴) ⊂ (𝜀,∞).
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We now aim at relating this property to inner products of the form ⟨𝐴𝑢, 𝑢⟩, 𝑢 ∈ H .

Definition 1.21. Let 𝐴 ∈ B(H) be self-adjoint.
The numbers

𝑚 ··= inf
∥𝑢∥=1

⟨𝐴𝑢, 𝑢⟩, 𝑀 ··= sup
∥𝑢∥=1

⟨𝐴𝑢, 𝑢⟩

are called respectively the lower bound and the upper bound of 𝐴.

It immediately follows from [6, theorem 2.2.13], [13, theorem 1.12] that

∥𝐴∥ = max( |𝑚|, |𝑀 |)

if 𝐴 ∈ B(H) is self-adjoint.

Proposition 1.22. Let 𝐴 ∈ B(H) be self-adjoint. Then 𝑚, 𝑀 ∈ 𝜎(𝐴).

Proof. To start, suppose 𝐴 is positive. In this case, we have ∥𝐴∥ = sup
∥𝑢∥=1

⟨𝐴𝑢, 𝑢⟩ = 𝑀 ≥

𝑚 ≥ 0. By definition of 𝑀, there is a sequence (𝑢𝑛)𝑛≥1 ⊂ H so that

∥𝑢𝑛∥ = 1, ⟨𝐴𝑢𝑛, 𝑢𝑛⟩ ≥ 𝑀 − 1
𝑛
.

for any 𝑛 ≥ 1. It follows that

∥(𝐴 − 𝑀IdH )𝑢𝑛∥2 = ∥𝐴𝑢𝑛∥2 − 2𝑀⟨𝐴𝑢𝑛, 𝑢𝑛⟩ + 𝑀2∥𝑢𝑛∥2

≤ 2𝑀2 − 2𝑀⟨𝐴𝑢𝑛, 𝑢𝑛⟩
−→ 0

as 𝑛 → ∞, and the remark right after Lemma 1.18 then yields 𝑀 ∈ 𝜎(𝐴). The same
arguing shows that 𝑚 ∈ 𝜎(𝐴) if 𝐴 is negative. The general case is handled as follows.
Let 𝐴 ∈ B(H) be self-adjoint, and 𝛾 > max( |𝑚|, |𝑀 |) = ∥𝐴∥. Observe that 𝐴 + 𝛾IdH
is then a positive operator, as

⟨(𝐴 + 𝛾IdH )𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩ + 𝛾∥𝑢∥2 ≥ −𝛾∥𝑢∥2 + 𝛾∥𝑢∥2 = 0

for any 𝑢 ∈ H , using the Cauchy-Schwarz inequality. Additionally, observe that 𝑀 +𝛾
is the upper bound of 𝐴 + 𝛾IdH , whence 𝑀 + 𝛾 ∈ 𝜎(𝐴 + 𝛾IdH ) by the particular case
we proved beforehand. By Lemma 1.16, we deduce 𝑀 ∈ 𝜎(𝐴). Similarly, we reduce
the proof of 𝑚 ∈ 𝜎(𝐴) to the case of a negative operator by considering 𝐴 − 𝛾IdH . □

We can then obtain the following corollary.
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Corollary 1.23. Let 𝐴 ∈ B(H) be positive. The following are equivalent.

(i) 𝐴 is invertible.

(ii) There exists 𝜀 > 0 so that ⟨𝐴𝑢, 𝑢⟩ ≥ 𝜀∥𝑢∥2 for any 𝑢 ∈ H .

Proof. (ii) =⇒ (i) : By the assumption and the Cauchy-Schwarz inequality, one has

∥𝐴𝑢∥∥𝑢∥ ≥ ⟨𝐴𝑢, 𝑢⟩ ≥ 𝜀∥𝑢∥2

for any 𝑢 ∈ H \ {0}, and dividing through by ∥𝑢∥ ≠ 0 yields ∥𝐴𝑢∥ ≥ 𝜀∥𝑢∥ for all
𝑢 ∈ H \ {0}. As the same inequality holds if 𝑢 = 0, and as 𝐴 is normal, Corollary
1.10(iii) implies that 𝐴 is invertible.
(i) =⇒ (ii) : We show rather the contrapositive. Suppose that for any 𝜀 > 0, there is
𝑢 ∈ H so that ⟨𝐴𝑢, 𝑢⟩ < 𝜀∥𝑢∥2. In particular, for each 𝑛 ≥ 1, we find 𝑢𝑛 ∈ H so that

⟨𝐴𝑢𝑛, 𝑢𝑛⟩ <
1
𝑛
∥𝑢𝑛∥2.

This inequality implies that 𝑢𝑛 ≠ 0, and we consider 𝑣𝑛 =
𝑢𝑛
∥𝑢𝑛∥ , for any 𝑛 ≥ 1. We

have thus found a sequence (𝑣𝑛)𝑛≥1 so that ∥𝑣𝑛∥ = 1 and ⟨𝐴𝑣𝑛, 𝑣𝑛⟩ < 1
𝑛

for any 𝑛 ≥ 1.
This easily implies that the lower bound of 𝐴 is 0, and applying Proposition 1.22, we
get that 0 ∈ 𝜎(𝐴), whence 𝐴 is not invertible. □

Here is an important fact on the spectral radius. It is sometimes referred as the
Gelfand’s formula, or the spectral radius formula. The proof relies on complex analysis,
which we did not introduce, so we will omit it.

Theorem 1.24. Let 𝐴 ∈ B(H). Then 𝑟(𝐴) = lim
𝑛→∞

∥𝐴𝑛∥1/𝑛.

Proof. See [3, theorem 5.2.7]. □

We derive from this result the following consequences.

Corollary 1.25. Let 𝐴, 𝐵 ∈ B(H).

(i) If 𝐴𝐵 = 𝐵𝐴, then 𝑟(𝐴𝐵) ≤ 𝑟(𝐴)𝑟(𝐵).

(ii) If 𝐴 is normal, then 𝑟(𝐴) = ∥𝐴∥.
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Proof. (i) Since 𝐴 and 𝐵 commute, (𝐴𝐵)𝑛 = 𝐴𝑛𝐵𝑛 for all 𝑛 ∈ ℕ. Using Theorem 1.24
and the submultiplicativity of the norm, it follows that

𝑟(𝐴𝐵) = lim
𝑛→∞

∥(𝐴𝐵)𝑛∥1/𝑛 = lim
𝑛→∞

∥𝐴𝑛𝐵𝑛∥1/𝑛 ≤ lim
𝑛→∞

∥𝐴𝑛∥1/𝑛 lim
𝑛→∞

∥𝐵𝑛∥1/𝑛 = 𝑟(𝐴)𝑟(𝐵)

as announced.
(ii) Suppose first that 𝐴 is self-adjoint. Using Proposition 1.5(iv), one has ∥𝐴2∥ =

∥𝐴∥2. Applying this equality with 𝐴2, which is also self-adjoint, yields ∥𝐴4∥ = ∥𝐴∥4.
Continuing this inductive process we get

∥𝐴2𝑛 ∥ = ∥𝐴∥2𝑛

for all 𝑛 ∈ ℕ. Then ∥𝐴2𝑛 ∥1/2𝑛 = ∥𝐴∥ for all 𝑛 ∈ ℕ, and we get

𝑟(𝐴) = lim
𝑛→∞

∥𝐴𝑛∥1/𝑛 = lim
𝑛→∞

∥𝐴2𝑛 ∥1/2𝑛 = ∥𝐴∥

establishing (ii) in this particular case.
Now, more generally, suppose that 𝐴 is normal. Applying what we just showed to

the operator 𝐴∗𝐴, which is self-adjoint, we have

∥𝐴∥2 = ∥𝐴∗𝐴∥ = 𝑟(𝐴∗𝐴) ≤ 𝑟(𝐴∗)𝑟(𝐴) = 𝑟(𝐴)2 ≤ ∥𝐴∥2.

Here the first equality is again Proposition 1.5(iv) and the first upper bound is point
(i) of the present corollary. The last equality and the last upper bound are the two
remarks following Definition 1.13. Hence we deduce 𝑟(𝐴)2 = ∥𝐴∥2, giving 𝑟(𝐴) = ∥𝐴∥
and finishing the proof. □

1.4 Functional calculus for self-adjoint operators

The goal of this part is to give a sense to expressions of the form 𝑓 (𝐴), where 𝐴 is
a self-adjoint operator on H and 𝑓 is a continuous function on 𝜎(𝐴) ⊂ ℝ.

To start, if 𝐴 ∈ B(H) and if 𝑃(𝑋) = 𝑎𝑛𝑋𝑛 + · · · + 𝑎1𝑋 + 𝑎0 ∈ ℂ[𝑋] is a polynomial
in the formal variable 𝑋 , we define

𝑃(𝐴) ··= 𝑎𝑛𝐴𝑛 + · · · + 𝑎1𝐴 + 𝑎0IdH ∈ B(H).

The first result we establish is that this construction is compatible with the spec-
trum of an operator. To show this, we need a lemma about commutativity and invert-
ibility of operators.

Lemma 1.26. Let 𝐴, 𝐵 ∈ B(H) be so that 𝐴𝐵 = 𝐵𝐴. If 𝐴𝐵 is invertible, then 𝐴
and 𝐵 are invertible. More generally, if 𝐴1 · · · 𝐴𝑘 is invertible and 𝐴1, . . . , 𝐴𝑘 ∈
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B(H) are pairwise commuting, i.e.

𝐴𝑖𝐴 𝑗 = 𝐴 𝑗𝐴𝑖

for all 𝑖, 𝑗 = 1, . . . , 𝑘, then 𝐴𝑖 is invertible for all 𝑖 = 1, . . . , 𝑘.

Proof. By assumption, there is 𝐶 ∈ B(H) so that 𝐶(𝐴𝐵) = (𝐴𝐵)𝐶 = IdH . By associa-
tivity, 𝐴 has 𝐵𝐶 as right inverse, and by commutativity of 𝐴 and 𝐵, 𝐶𝐵 as left inverse.
But then

(𝐶𝐵)𝐴 = IdH =⇒ (𝐶𝐵𝐴)𝐵𝐶 = 𝐵𝐶 =⇒ 𝐶𝐵(𝐴𝐵𝐶) = 𝐵𝐶 =⇒ 𝐶𝐵 = 𝐵𝐶.

We conclude that 𝐵𝐶 is the inverse of 𝐴. The same reasoning shows that 𝐴𝐶 = 𝐶𝐴 is
the inverse of 𝐵.

Let us now turn our attention to the second statement, that we prove by induction
on 𝑘 ≥ 1. If 𝑘 = 1, there is nothing to show, and we have just handled the case 𝑘 = 2.
If now the statement holds for some 𝑘 ≥ 1, and that 𝐴1, . . . , 𝐴𝑘, 𝐴𝑘+1 ∈ B(H) are
pairwise commuting with 𝐴1 · · · 𝐴𝑘+1 being invertible, then the operators 𝐴1 · · · 𝐴𝑘 and
𝐴𝑘+1 commute, and their product is invertible. By the case we just proved, we deduce
that 𝐴1 · · · 𝐴𝑘 and 𝐴𝑘+1 are invertible. Now 𝐴1, . . . , 𝐴𝑘 are pairwise commuting and
their product is invertible, so the induction hypothesis applies, and 𝐴1, . . . , 𝐴𝑘 are
invertible. This concludes the inductive step, and our proof. □

Proposition 1.27. Let 𝐴 ∈ B(H), 𝑃(𝑋) ∈ ℂ[𝑋]. Then

𝜎(𝑃(𝐴)) = 𝑃(𝜎(𝐴)) = {𝑃(𝜆) : 𝜆 ∈ 𝜎(𝐴)}.

Proof. If 𝑃 is the zero polynomial or is constant, the claim is obvious. Suppose then
that deg(𝑃) ≥ 1. First, suppose that 𝜆 ∉ 𝑃(𝜎(𝐴)). Since ℂ is algebraically closed, we
can factor

𝑃(𝑋) − 𝜆 = 𝑐(𝑋 − 𝜇1) . . . (𝑋 − 𝜇𝑛)
where 𝑛 ··= deg(𝑃), 𝜇1, . . . , 𝜇𝑛 ∈ ℂ, and 𝑐 ∈ ℂ \ {0}. We deduce that

𝑃(𝜇1) = · · · = 𝑃(𝜇𝑛) = 𝜆

and by assumption 𝜆 ∉ 𝑃(𝜎(𝐴)), so it follows that 𝜇1, . . . , 𝜇𝑛 ∉ 𝜎(𝐴). This implies
that 𝐴 − 𝜇𝑖IdH is invertible for all 𝑖 = 1, . . . , 𝑛, and thus so is the operator

𝑐(𝐴 − 𝜇1IdH ) . . . (𝐴 − 𝜇𝑛IdH ) = 𝑃(𝐴) − 𝜆IdH .

Hence 𝜆 ∉ 𝜎(𝑃(𝐴)), which shows that 𝜎(𝑃(𝐴)) ⊂ 𝑃(𝜎(𝐴)).
Conversely, suppose 𝜆 ∈ 𝑃(𝜎(𝐴)), and as above write

𝑃(𝑋) − 𝜆 = 𝑐(𝑋 − 𝜇1) . . . (𝑋 − 𝜇𝑛).
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We have 𝜆 = 𝑃(𝑧) for some 𝑧 ∈ 𝜎(𝐴), so 𝑧 is a root of 𝑃(𝑋) − 𝜆. Up to re-labeling, say
𝑧 = 𝜇1. We deduce that 𝐴 − 𝜇1IdH is not invertible, whence

𝑐(𝐴 − 𝜇1IdH ) . . . (𝐴 − 𝜇𝑛IdH ) = 𝑃(𝐴) − 𝜆IdH

is not invertible either, by the contrapositive of Lemma 1.26. We conclude that 𝜆 is in
𝜎(𝑃(𝐴)), as wanted. This concludes the proof. □

Remark 1.28. Note that this result provides an immediate proof of Lemma 1.16.

If 𝐴 is a bounded self-adjoint operator on H , its spectrum is a compact subset of
the real line, and we can consider 𝐶(𝜎(𝐴)) the Banach space of continuous functions
defined on 𝜎(𝐴) ⊂ ℝ with values in ℂ, equipped with the supremum norm ∥ · ∥∞.
Moreover, we endow this space with a multiplicative structure by setting

( 𝑓 𝑔) (𝜆) ··= 𝑓 (𝜆)𝑔(𝜆)

for any 𝑓 , 𝑔 ∈ 𝐶(𝜎(𝐴)), 𝜆 ∈ 𝜎(𝐴), and an involutive structure via 𝑓 (𝜆) ··= 𝑓 (𝜆),
𝑓 ∈ 𝐶(𝜎(𝐴)), 𝜆 ∈ 𝜎(𝐴). Equipped with these maps, 𝐶(𝜎(𝐴)) is a 𝐶∗−algebra (see e.g.
[6, example 9.1.4]).

The main idea to define 𝑓 (𝐴) for any self-adjoint operator 𝐴 and 𝑓 ∈ 𝐶(𝜎(𝐴)) is to
approximate 𝑓 by polynomials appealing the Weierstrass approximation theorem and
using that any continuous linear map defined on a dense subspace of a normed space
and taking values in a Banach space can be uniquely extended to the whole space.

Proposition 1.29. Let 𝑋 be a normed space, 𝑌 be a Banach space, and 𝐸 ⊂ 𝑋

be a dense subspace of 𝑋 . Denote 𝜄 : 𝐸 ↩→ 𝑋 the natural injection.
For any continous linear map 𝑓 : 𝐸 −→ 𝑌 , there exists a unique continuous linear
map 𝑓 : 𝑋 −→ 𝑌 so that 𝑓 ◦ 𝜄 = 𝑓 .

Proof. Let 𝑓 : 𝐸 −→ 𝑌 be linear and continuous, and let 𝐹 (𝑡) = ∥ 𝑓 ∥𝑡, 𝑡 ≥ 0, be a
modulus of continuity(6) for 𝑓 . Let 𝑥 ∈ 𝑋 . By density of 𝐸, there exists a sequence
(𝑥𝑛)𝑛∈ℕ in 𝐸 so that 𝑥𝑛 → 𝑥 as 𝑛 → ∞. In particular (𝑥𝑛)𝑛∈ℕ is Cauchy, and as 𝑓 is
linear continuous, ( 𝑓 (𝑥𝑛))𝑛∈ℕ is Cauchy in𝑌 . As𝑌 is complete, this sequence converges
to some 𝑦 ∈ 𝑌 . Set then 𝑓 (𝑥) ··= 𝑦. A priori, this definition of 𝑓 (𝑥) may depend on the
choice of the sequence we make to approach 𝑥. If we pick another sequence (𝑥′𝑛)𝑛∈ℕ
converging to 𝑥, then

lim
𝑛→∞

∥𝑥𝑛 − 𝑥′𝑛∥ = ∥ lim
𝑛→∞

(𝑥𝑛 − 𝑥′𝑛)∥ = 0

whence lim
𝑛→∞

∥ 𝑓 (𝑥𝑛) − 𝑓 (𝑥′𝑛)∥ ≤ lim
𝑛→∞

𝐹 (∥𝑥𝑛 − 𝑥′𝑛∥) = 0, proving that

lim
𝑛→∞

𝑓 (𝑥𝑛) = lim
𝑛→∞

𝑓 (𝑥′𝑛).

(6)Note that any continuous linear map 𝑓 : 𝑋 −→ 𝑌 between two normed spaces is in fact uniformly
continuous, and that 𝐹 (𝑡) = ∥ 𝑓 ∥𝑡, 𝑡 ≥ 0, is a modulus of continuity for 𝑓 , as in Proposition A.11.
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Hence 𝑓 is well-defined. By construction it is also linear and satisfies 𝑓 ◦ 𝜄 = 𝑓 . More-
over, if 𝑥, 𝑦 ∈ 𝑋 , choose two sequences (𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ in 𝐸 converging to 𝑥 and 𝑦

respectively, and observe that
∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ = lim

𝑛→∞
∥ 𝑓 (𝑥𝑛) − 𝑓 (𝑦𝑛)∥

≤ lim
𝑛→∞

𝐹 (∥𝑥𝑛 − 𝑦𝑛∥)

= ∥ 𝑓 ∥ lim
𝑛→∞

∥𝑥𝑛 − 𝑦𝑛∥

= 𝐹 (∥𝑥 − 𝑦∥)
by continuity of the norm. We deduce that 𝑓 is uniformly continuous, with the same
modulus of continuity as 𝑓 . Additionally, 𝑓 is unique because continuous and equals
to 𝑓 on the dense subspace 𝐸 ⊂ 𝑋 . This finishes the proof. □

As advertised, here is the second main ingredient we need.

Weierstrass approximation theorem. Let 𝑋 ⊂ ℝ be a compact set. Then the
subspace of 𝐶(𝑋) consisting of polynomial functions is dense in 𝐶(𝑋) for the supre-
mum norm ∥ · ∥∞.

There is in fact a more general version of this result, called the Stone-Weierstrass
theorem, giving necessary and sufficient conditions for a subalgebra of 𝐶(𝑋) to be
dense in 𝐶(𝑋). We will not show any of these results, and we refer to [3, theorem
5.4.5], [5, theorem II.1.8] or [6, theorem 8.1] for more background and proofs of these
theorems.

Henceforth, we are in a position to show the existence of a functional calculus for
self-adjoint operators.

Theorem 1.30. Let 𝐴 ∈ B(H) be self-adjoint.
There exists a unique continuous map

�̃�𝐴 : 𝐶(𝜎(𝐴)) −→ B(H)
𝑓 ↦−→ 𝑓 (𝐴)

so that 𝑓 (𝐴) has its usual sense if 𝑓 is a polynomial and so that, for all 𝑓 , 𝑔 ∈
𝐶(𝜎(𝐴)), 𝑎, 𝑏 ∈ ℂ, one has

(i) ∥ 𝑓 (𝐴)∥ = ∥ 𝑓 ∥∞.

(ii) (𝑎𝑓 + 𝑏𝑔) (𝐴) = 𝑎𝑓 (𝐴) + 𝑏𝑔(𝐴).

(iii) ( 𝑓 𝑔) (𝐴) = 𝑓 (𝐴)𝑔(𝐴).

(iv) 𝑓 (𝐴) = 𝑓 (𝐴)∗.

(v) 𝑓 (𝐴) is normal.

(vi) 𝐵𝑓 (𝐴) = 𝑓 (𝐴)𝐵 if 𝐵 ∈ B(H) satisfies 𝐴𝐵 = 𝐵𝐴.
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Proof. By Proposition 1.19, 𝜎(𝐴) is a compact subset of ℝ, and by the Weierstrass
approximation theorem, the subset 𝐷 of 𝐶(𝜎(𝐴)) consisting of polynomials with com-
plex coefficients is dense in 𝐶(𝜎(𝐴)), for the topology induced by ∥ · ∥∞. If 𝑃(𝑋) =

𝑎𝑛𝑋
𝑛 + · · · + 𝑎1𝑋 + 𝑎0 is such a polynomial, 𝑃(𝐴) = 𝑎𝑛𝐴𝑛 + · · · + 𝑎1𝐴 + 𝑎0IdH , and as

𝐴 is self-adjoint and (𝐴𝑘)∗ = (𝐴∗)𝑘 for all 𝑘 ∈ ℕ(7), we get

𝑃(𝐴)∗ = 𝑎𝑛𝐴𝑛 + · · · + 𝑎1𝐴 + 𝑎0IdH = 𝑃(𝐴).

In particular, 𝑃(𝐴)𝑃(𝐴)∗ = 𝑃(𝐴)∗𝑃(𝐴), so 𝑃(𝐴) is normal. Next, if 𝐵 ∈ B(H) com-
mutes with 𝐴, it also commutes with all powers of 𝐴, and hence with 𝑃(𝐴). Likewise
(ii) and (iii) are easily checked if 𝑓 , 𝑔 are polynomials. Additionally, it holds that

∥𝑃(𝐴)∥ = 𝑟(𝑃(𝐴)) = sup
𝜆∈𝜎(𝑃(𝐴))

|𝜆 | = sup
𝜇∈𝜎(𝐴)

|𝑃(𝜇) | = ∥𝑃∥∞

using Corollary 1.25(ii) for the first equality, the definition of the spectral radius for
the second, and Proposition 1.27 for the third one. Hence the map

𝜑𝐴 : 𝐷 −→ B(H)
𝑃 ↦−→ 𝑃(𝐴)

is well-defined, and isometric. In particular, it is continuous. It is also linear. The set
𝐷 being dense in 𝐶(𝜎(𝐴)), and B(H) being a Banach space, Proposition 1.29 shows
that 𝜑 extends uniquely to a continuous linear map

�̃�𝐴 : 𝐶(𝜎(𝐴)) −→ B(H)
𝑓 ↦−→ 𝑓 (𝐴).

The fact that �̃�𝐴 extends 𝜑𝐴 precisely means that �̃�𝐴( 𝑓 ) = 𝑓 (𝐴) has its usual sense if
𝑓 is a polynomial. This proves the first claim. We checked (i)-(vi) are satisfied if 𝑓 is a
polynomial, and by continuity they must remain true for all 𝑓 , 𝑔 ∈ 𝐶(𝜎(𝐴)). We show
this for (i) and (iv) to illustrate how it works, and the other proofs are similar (see e.g.
[3, theorem 5.4.7]).

Let 𝑓 ∈ 𝐶(𝜎(𝐴)). There exists a sequence (𝑃𝑛)𝑛∈ℕ ⊂ 𝐷 that converges to 𝑓 in norm,
i.e.

lim
𝑛→∞

∥𝑃𝑛 − 𝑓 ∥∞ = 0.

Since �̃� is continuous, we also have lim
𝑛→∞

∥ 𝑓 (𝐴) − 𝑃𝑛(𝐴)∥B(H) = 0. This implies��∥ 𝑓 (𝐴)∥B(H) − ∥ 𝑓 ∥∞
�� = ��∥ 𝑓 (𝐴)∥B(H) − ∥𝑃𝑛(𝐴)∥B(H) + ∥𝑃𝑛(𝐴)∥B(H) − ∥ 𝑓 ∥∞

��
≤
��∥ 𝑓 (𝐴)∥B(H) − ∥𝑃𝑛(𝐴)∥B(H)

�� + ��∥𝑃𝑛∥∞ − ∥ 𝑓 ∥∞
��

≤ ∥ 𝑓 (𝐴) − 𝑃𝑛(𝐴)∥B(H) + ∥𝑃𝑛 − 𝑓 ∥∞
(7)This is checked by induction on 𝑘 ∈ ℕ. For 𝑘 = 0 it reduces to IdH = IdH , and if it holds for 𝑘 ∈ ℕ,

then
(𝐴𝑘+1)∗ = (𝐴𝑘𝐴)∗ = 𝐴∗(𝐴𝑘)∗ = 𝐴∗(𝐴∗)𝑘 = (𝐴∗)𝑘+1

as announced.
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for any 𝑛 ∈ ℕ, using several times the two triangle inequalities, and the fact that (i)
holds for polynomials. In this last estimate, both terms tend to 0 as 𝑛 → ∞, and we
conclude that

∥ 𝑓 (𝐴)∥B(H) = ∥ 𝑓 ∥∞
which shows (i).

Now we turn to (iv). Again let 𝑓 ∈ 𝐶(𝜎(𝐴)), and pick a sequence (𝑃𝑛)𝑛∈ℕ in 𝐷

converging to 𝑓 in norm. The complex conjugation is the involution of the 𝐶∗−algebra
𝐶(𝜎(𝐴)) and is therefore continuous(8), whence (𝑃𝑛)𝑛∈ℕ converges to 𝑓 . By continuity
of �̃�𝐴, (𝑃𝑛(𝐴))𝑛∈ℕ converges to 𝑓 (𝐴) and (𝑃𝑛(𝐴))𝑛∈ℕ converges to 𝑓 (𝐴). Hence, if
𝑢, 𝑣 ∈ H , we compute that

⟨𝑢, 𝑓 (𝐴)𝑣⟩ = lim
𝑛→∞

⟨𝑢, 𝑃𝑛(𝐴)𝑣⟩

= lim
𝑛→∞

⟨𝑢, 𝑃𝑛(𝐴)∗𝑣⟩

= lim
𝑛→∞

⟨𝑃𝑛(𝐴)𝑢, 𝑣⟩

= ⟨ lim
𝑛→∞

𝑃𝑛(𝐴)𝑢, 𝑣⟩

= ⟨𝑓 (𝐴)𝑢, 𝑣⟩

for any 𝑛 ∈ ℕ, using continuity of the inner product in each variable for the first and
fourth equality, and the fact that (iv) holds for 𝑃𝑛, 𝑛 ∈ ℕ. Hence we conclude that
𝑓 (𝐴) = 𝑓 (𝐴)∗, and (iv) is verified for any 𝑓 ∈ 𝐶(𝜎(𝐴)). □

We will refer to property (iii) above by saying that �̃�𝐴 is multiplicative.
More generally, if 𝜓 : A1 −→ A2 is a map between two 𝐶∗−algebras, 𝜓 is called

multiplicative if it preserves multiplicative structures:

𝜓 (𝑎𝑏) = 𝜓 (𝑎)𝜓 (𝑏)

for any 𝑎, 𝑏 ∈ A1.
We note directly from Theorem 1.30(iv) that 𝑓 (𝐴) is self-adjoint if and only 𝑓 is

real-valued.

Remark 1.31. If 𝐴 ∈ B(H) is self-adjoint, the functional calculus for 𝐴 is compatible
with conjugation by a fixed bounded invertible operator, i.e. if 𝐵 ∈ Aut(H), and 𝑓 ∈
𝐶(𝜎(𝐴)), then

𝑓 (𝐵−1𝐴𝐵) = 𝐵−1 𝑓 (𝐴)𝐵.
We first see that the above relation holds if 𝑓 is a polynomial, because it holds for
monomials of the form 𝑋𝑛 (by induction for instance) and because of linearity of con-
jugation. If now 𝑓 ∈ 𝐶(𝜎(𝐴)), choose a sequence (𝑃𝑛)𝑛∈ℕ so that 𝑃𝑛 → 𝑓 as 𝑛 → ∞.
We then write that

∥ 𝑓 (𝐵−1𝐴𝐵) − 𝐵−1 𝑓 (𝐴)𝐵∥ = ∥ 𝑓 (𝐵−1𝐴𝐵) − 𝑃𝑛(𝐵−1𝐴𝐵) + 𝑃𝑛(𝐵−1𝐴𝐵) − 𝐵−1 𝑓 (𝐴)𝐵∥
(8)As proved right after Proposition 1.5.
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≤ ∥ 𝑓 (𝐵−1𝐴𝐵) − 𝑃𝑛(𝐵−1𝐴𝐵)∥ + ∥𝐵−1𝑃𝑛(𝐴)𝐵 − 𝐵−1 𝑓 (𝐴)𝐵∥
≤ ∥ 𝑓 − 𝑃𝑛∥∞ + ∥𝐵−1∥∥ 𝑓 − 𝑃𝑛∥∞∥𝐵∥

for any 𝑛 ∈ ℕ, and ∥ 𝑓 − 𝑃𝑛∥∞ −→ 0 as 𝑛→ ∞. This implies

𝑓 (𝐵−1𝐴𝐵) = 𝐵−1 𝑓 (𝐴)𝐵

as wanted.

Furthermore, �̃�𝐴 is injective, as if 𝑓 , 𝑔 ∈ 𝐶(𝜎(𝐴)) satisfy 𝑓 (𝐴) = �̃�𝐴( 𝑓 ) = �̃�𝐴(𝑔) =
𝑔(𝐴), points (i) and (ii) of Theorem 1.30 provide

∥𝑔 − 𝑓 ∥∞ = ∥(𝑔 − 𝑓 ) (𝐴)∥ = ∥𝑔(𝐴) − 𝑓 (𝐴)∥ = 0

and thus 𝑔 = 𝑓 . This observation yields the following corollary, which will be useful
when introducing square roots.

Corollary 1.32. Let 𝐴 ∈ B(H). The following equivalences hold.

(i) 𝐴 is self-adjoint if and only if 𝜎(𝐴) ⊂ ℝ.

(ii) 𝐴 is unitary if and only if 𝜎(𝐴) ⊂ 𝕊1.

(iii) 𝐴 is positive if and only if 𝐴 is self-adjoint and 𝜎(𝐴) ⊂ [0,∞).

Proof. (i) We have the sequence of equivalences

𝐴 = 𝐴∗ ⇐⇒ �̃�𝐴(Id𝜎(𝐴)) = �̃�𝐴(Id𝜎(𝐴))∗

⇐⇒ �̃�𝐴(Id𝜎(𝐴)) = �̃�𝐴(Id𝜎(𝐴))
⇐⇒ Id𝜎(𝐴) = Id𝜎(𝐴)

using that �̃�𝐴 is involution-preserving (point (iv) of Theorem 1.30) and injective. Since
the last equality means exactly 𝜎(𝐴) ⊂ ℝ, this proves the claim.
(ii) Denoting by 1𝜎(𝐴) the constant function equals to 1 on 𝜎(𝐴), we have

𝐴∗𝐴 = IdH ⇐⇒ �̃�𝐴(Id𝜎(𝐴))∗�̃�𝐴(Id𝜎(𝐴)) = �̃�𝐴(1𝜎(𝐴))
⇐⇒ �̃�𝐴(Id𝜎(𝐴))�̃�𝐴(Id𝜎(𝐴)) = �̃�𝐴(1𝜎(𝐴))
⇐⇒ �̃�𝐴( |Id𝜎(𝐴) |2) = �̃�𝐴(1𝜎(𝐴))
⇐⇒ |Id𝜎(𝐴) |2 = 1𝜎(𝐴)

⇐⇒ ∀𝜆 ∈ 𝜎(𝐴), |𝜆 |2 = 1
⇐⇒ 𝜎(𝐴) ⊂ {𝜆 ∈ ℂ : |𝜆 | = 1}.

If 𝐴 is unitary, then 𝐴∗𝐴 = IdH , and 𝐴 has spectrum contained in the unit circle.
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Conversely, if 𝐴 has spectrum contained in the unit circle, 𝐴∗𝐴 = IdH and addition-
ally, 𝐴 is invertible as 0 ∉ 𝜎(𝐴). These two conditions imply 𝐴𝐴∗ = IdH (as explained
right after Proposition 1.9), and 𝐴 is unitary.
(iii) It follows from Proposition 1.9(iii) that a positive operator 𝐴 is self-adjoint and
from Proposition 1.19 that 𝜎(𝐴) ⊂ [0,∞).

Conversely, if a self-adjoint operator 𝐴 has 𝜎(𝐴) ⊂ [0,∞), the function 𝑓 (𝑡) = 𝑡1/2

is well-defined and continuous on 𝜎(𝐴). We may then apply Theorem 1.30 to 𝐴 to get
an operator 𝐵 = 𝑓 (𝐴) with the property that

𝐵2 = 𝑓 (𝐴) 𝑓 (𝐴) = ( 𝑓 2) (𝐴) = (Id𝜎(𝐴)) (𝐴) = 𝐴.

Additionally, 𝐵 is self-adjoint since 𝑓 takes real values, which allows us to compute

⟨𝐴𝑢, 𝑢⟩ = ⟨𝐵2𝑢, 𝑢⟩ = ⟨𝐵𝑢, 𝐵𝑢⟩ = ∥𝐵𝑢∥2 ≥ 0

for any 𝑢 ∈ H . This proves that 𝐴 is positive. □

Our next goal is to boost Proposition 1.27, to extend it to any continuous function
on the spectrum of a bounded self-adjoint operator. This requires several steps. The
first one is the next lemma.

Lemma 1.33. Let 𝐴 ∈ B(H) be self-adjoint, and 𝑓 ∈ 𝐶(𝜎(𝐴)). Then

𝜎( 𝑓 (𝐴)) ⊂ 𝑓 (𝜎(𝐴)).

Proof. Suppose 𝜆 ∉ 𝑓 (𝜎(𝐴)). We show that 𝜆 ∉ 𝜎( 𝑓 (𝐴)). By assumption, 𝜆 is not in
the range of 𝑓 , so we may consider the function

𝑔(𝑧) ··=
1

𝑓 (𝑧) − 𝜆
, 𝑧 ∈ 𝜎(𝐴)

which is also in 𝐶(𝜎(𝐴)). One has then

( 𝑓 (𝐴) − 𝜆IdH )𝑔(𝐴) = (( 𝑓 − 𝜆)𝑔) (𝐴) = 1𝜎(𝐴) (𝐴) = IdH
𝑔(𝐴) ( 𝑓 (𝐴) − 𝜆IdH ) = (𝑔( 𝑓 − 𝜆)) (𝐴) = 1𝜎(𝐴) (𝐴) = IdH

using point (iii) of Theorem 1.30. This shows that 𝑓 (𝐴) − 𝜆IdH is invertible. Thus
𝜆 ∉ 𝜎( 𝑓 (𝐴)) and we conclude that 𝜎( 𝑓 (𝐴)) ⊂ 𝑓 (𝜎(𝐴)). □

To prove the converse, we will appeal the next fact about invertible operators.

Lemma 1.34. Aut(H) is open in B(H).
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Proof. Fix 𝐴 ∈ Aut(H), and let 𝐵 ∈ B(H) be so that ∥𝐴 − 𝐵∥ < 1
∥𝐴−1∥ . Then

∥IdH − 𝐴−1𝐵∥ = ∥𝐴−1(𝐴 − 𝐵)∥ ≤ ∥𝐴−1∥∥𝐴 − 𝐵∥ < 1

and it follows from the claim proved in Proposition 1.12 that IdH−(IdH−𝐴−1𝐵) = 𝐴−1𝐵
is invertible. Thus 𝐵 = 𝐴(𝐴−1𝐵) is invertible as a product of two invertible operators.
This shows that Aut(H) is a neighbourhood of any of its elements, i.e. is open in
B(H). □

We are now ready to see that continuous functions preserve spectrums.

Theorem 1.35. Let 𝐴 ∈ B(H) be self-adjoint, and 𝑓 ∈ 𝐶(𝜎(𝐴)). Then

𝜎( 𝑓 (𝐴)) = 𝑓 (𝜎(𝐴)).

Proof. One inclusion is Lemma 1.33. We prove the reverse inclusion. Let𝜆 ∈ 𝜎(𝐴) and
set 𝜇 ··= 𝑓 (𝜆). We must argue that 𝜇 ∈ 𝜎( 𝑓 (𝐴)). Towards a contradiction, suppose that
𝜇 ∉ 𝜎( 𝑓 (𝐴)). This implies that 𝑓 (𝐴) − 𝜇IdH is invertible. Now, choose a sequence of
polynomials (𝑃𝑛)𝑛∈ℕ that converges to 𝑓 in𝐶(𝜎(𝐴)). By continuity of �̃�𝐴, the sequence

(𝑃𝑛(𝐴) − 𝑃𝑛(𝜆)IdH )𝑛∈ℕ
converges to 𝑓 (𝐴) − 𝜇IdH , and since the latter is invertible, 𝑃𝑛(𝐴) − 𝑃𝑛(𝜆)IdH is
invertible for 𝑛 large enough, by Lemma 1.34. Thus 𝑃𝑛(𝜆) ∉ 𝜎(𝑃𝑛(𝐴)) for 𝑛 large
enough, which is absurd in view of Proposition 1.27. We conclude that 𝜇 ∈ 𝜎( 𝑓 (𝐴)),
and the proof is complete. □

This theorem has immediate consequences.

Corollary 1.36. Let 𝐴 ∈ B(H) be self-adjoint and 𝑓 ∈ 𝐶(𝜎(𝐴)). Then

(i) 𝑓 (𝐴) is positive if and only if 𝑓 takes positive real values.

(ii) 𝑓 (𝐴) is unitary if and only if 𝑓 takes values in 𝕊1.

Proof. (i) Using Corollary 1.32(iii), 𝑓 (𝐴) is positive if and only if 𝑓 (𝐴) is self-adjoint and
𝜎( 𝑓 (𝐴)) ⊂ [0,∞), or equivalently 𝑓 is real-valued and 𝑓 (𝜎(𝐴)) ⊂ [0,∞), by Theorem
1.35. These two conditions are equivalent to the single one 𝑓 (𝜎(𝐴)) ⊂ [0,∞), whence
the claim.
(ii) Likewise, by Corollary 1.32(ii), 𝑓 (𝐴) is unitary if and only if 𝜎( 𝑓 (𝐴)) ⊂ 𝕊1, i.e. if
and only if 𝑓 (𝜎(𝐴)) ⊂ 𝕊1, by Theorem 1.35. □

As already used several times, if 𝑓 ∈ 𝐶(𝜎(𝐴)) is real-valued, then 𝑓 (𝐴) is self-
adjoint. In that case, it is then possible to apply Theorem 1.30 to 𝑓 (𝐴) itself. The next
proposition describes the functional calculus for 𝑓 (𝐴) in terms of the one for 𝐴.
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Proposition 1.37. Let 𝐴 ∈ B(H) be self-adjoint, and 𝑓 ∈ 𝐶(𝜎(𝐴)) be real-
valued. If 𝑔 ∈ 𝐶(𝜎( 𝑓 (𝐴))), then 𝑔 ◦ 𝑓 ∈ 𝐶(𝜎(𝐴)) and

�̃�𝐴(𝑔 ◦ 𝑓 ) = �̃�𝑓 (𝐴) (𝑔).

Proof. It is a uniqueness arguing. Denote

𝜓 : 𝐶(𝜎( 𝑓 (𝐴))) −→ 𝐶(𝜎(𝐴))
𝑔 ↦−→ 𝑔 ◦ 𝑓 .

Let 𝑔 ∈ 𝐶(𝜎( 𝑓 (𝐴))). Since 𝜎( 𝑓 (𝐴)) = 𝑓 (𝜎(𝐴)) by Theorem 1.35, 𝑔 is continuous on
the image of 𝑓 , so 𝑔◦ 𝑓 is continuous on 𝜎(𝐴) and 𝜓 is well-defined. With this notation,
we are left to prove

�̃�𝐴 ◦𝜓 = �̃�𝑓 (𝐴) .

Note first that 𝜓 is an isometry, as

∥𝜓 (𝑔)∥∞ = ∥𝑔 ◦ 𝑓 ∥∞ = sup
𝑥∈𝜎(𝐴)

|𝑔 ◦ 𝑓 (𝑥) | = sup
𝑡∈𝜎( 𝑓 (𝐴))

|𝑔(𝑡) | = ∥𝑔∥∞

for any 𝑔 ∈ 𝐶(𝜎( 𝑓 (𝐴))), where the third equality relies on Theorem 1.35. In particular,
𝜓 is continuous. It is furthermore linear and multiplicative, as

𝜓 (𝑎𝑔1 + 𝑏𝑔2) = (𝑎𝑔1 + 𝑏𝑔2) ◦ 𝑓 = 𝑎(𝑔1 ◦ 𝑓 ) + 𝑏(𝑔2 ◦ 𝑓 ) = 𝑎𝜓 (𝑔1) + 𝑏𝜓 (𝑔2)

for any 𝑔1, 𝑔2 ∈ 𝐶(𝜎( 𝑓 (𝐴))), 𝑎, 𝑏 ∈ ℂ, as well as

𝜓 (𝑔1𝑔2) = (𝑔1𝑔2) ◦ 𝑓 = (𝑔1 ◦ 𝑓 ) (𝑔2 ◦ 𝑓 ) = 𝜓 (𝑔1)𝜓 (𝑔2)

for all 𝑔1, 𝑔2 ∈ 𝐶(𝜎( 𝑓 (𝐴))). This implies that �̃�𝐴 ◦𝜓 is continuous, linear and multi-
plicative. Now, we compute that

�̃�𝐴 ◦𝜓 (Id𝜎( 𝑓 (𝐴))) = �̃�𝐴(𝜓 (Id𝜎( 𝑓 (𝐴))))
= �̃�𝐴(Id𝜎( 𝑓 (𝐴)) ◦ 𝑓 )
= �̃�𝐴( 𝑓 )
= 𝑓 (𝐴)
= �̃�𝑓 (𝐴) (Id𝜎( 𝑓 (𝐴)))

meaning that �̃�𝐴 ◦ 𝜓 and �̃�𝑓 (𝐴) agree on Id𝜎( 𝑓 (𝐴)). Since both maps are linear and
multiplicative, they agree on the dense subset of polynomials in 𝐶(𝜎( 𝑓 (𝐴))). Coupled
with continuity of both maps already established, the uniqueness part in Theorem
1.30 forces to have �̃�𝐴 ◦𝜓 = �̃�𝑓 (𝐴), as wanted. We are done. □

Now, if 𝐴 ∈ B(H) is self-adjoint, Theorem 1.30 provides a new operator exp(𝐴) ∈
B(H), which is self-adjoint since the exponential is real-valued, and in fact positive
since the exponential takes positive values (Corollary 1.36(i)). It turns out this process
is invertible.
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Corollary 1.38. The exponential map exp: S(H) −→ P(H) is a bijection.

Proof. Let 𝐴 ∈ S(H). Then exp(𝐴) is positive, and also invertible since exp(𝑥) > 0
for any 𝑥 ∈ 𝜎(𝐴) and 𝜎(exp(𝐴)) = exp(𝜎(𝐴)). The map exp: S(H) −→ P(H) is
thus well-defined. Moreover, 𝜎(exp(𝐴)) ⊂ (0,∞), so the logarithm is well-defined and
continuous on 𝜎(exp(𝐴)). By Proposition 1.37 we have

�̃�𝐴(ln ◦ exp) = �̃�exp(𝐴) (ln)

i.e. ln(exp(𝐴)) = (ln ◦ exp) (𝐴). The right-hand side reduces to Id𝜎(𝐴) (𝐴) = 𝐴, so that

ln(exp(𝐴)) = 𝐴.

Conversely, if 𝐴 ∈ P(H) then 𝜎(𝐴) ⊂ (0,∞), ln ∈ 𝐶(𝜎(𝐴)) and is real-valued,
thus ln(𝐴) is self-adjoint. Applying the exponential yields as above to

exp(ln(𝐴)) = Id𝜎(𝐴) (𝐴) = 𝐴

showing that exp: S(H) −→ P(H) is a bijection, of inverse ln : P(H) −→ S(H). □

Remark 1.39. (i) Another way of defining the exponential of a self-adjoint operator is
the following: for 𝐴 ∈ S(H), consider the sequence of operators

𝑆𝑛 ··=
𝑛∑︁
𝑘=0

𝐴𝑘

𝑘!

and observe that, if 𝑛 ≥ 𝑚 ≥ 0, then

∥𝑆𝑛 − 𝑆𝑚∥ =
 𝑛∑︁
𝑘=0

𝐴𝑘

𝑘!
−

𝑚∑︁
𝑘=0

𝐴𝑘

𝑘!

 =  𝑛∑︁
𝑘=𝑚+1

𝐴𝑘

𝑘!

 ≤ 𝑛∑︁
𝑘=𝑚+1

∥𝐴∥𝑘
𝑘!

and since the last sum goes to 0 as 𝑛, 𝑚→ ∞ (it is the rest of the series that defines the
real number 𝑒∥𝐴∥), the sequence (𝑆𝑛)𝑛∈ℕ is Cauchy in B(H), and therefore converges
to a bounded operator, that we define to be exp(𝐴). In fact, this is exactly the way we
defined exp(𝐴) via functional calculus and Theorem 1.30, as its proof and the proof of
Proposition 1.29 shows it. This way, we will also work with this explicit construction,
invoking the sequence of partial sums (𝑆𝑛)𝑛∈ℕ.
(ii) On the other hand, note that the procedure exposed in (i) works in fact for any
bounded operator, not just self-adjoint ones, whereas Theorem 1.30 is restricted to
self-adjoint operators.

As for real numbers, we will write either exp(𝐴) or 𝑒𝐴 for the exponential of 𝐴 ∈
B(H).

One has the next properties for the exponential of an operator: for 𝐴, 𝐵 ∈ B(H), it
holds
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(i) 𝑒0 = IdH .

(ii) (𝑒𝐴)∗ = 𝑒𝐴∗.

(iii) If 𝐴𝐵 = 𝐵𝐴, then 𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵.

(iv) (𝑒𝐴)−1 = 𝑒−𝐴.

(v) ∥𝑒𝐴∥ ≤ 𝑒∥𝐴∥.

(i) is by definition, and (ii) follows from the continuity of the involution of B(H)(9):

(𝑒𝐴)∗ =
(

lim
𝑛→∞

𝑛∑︁
𝑘=0

𝐴𝑘

𝑘!

)∗
= lim
𝑛→∞

( 𝑛∑︁
𝑘=0

𝐴𝑘

𝑘!

)∗
= lim
𝑛→∞

𝑛∑︁
𝑘=0

(𝐴∗)𝑘
𝑘!

= 𝑒𝐴
∗
.

(iv) is an immediate consequence of (iii) and (i), with 𝐵 = −𝐴, and (v) follows from the
submultiplicativity and the continuity of the norm:

∥𝑒𝐴∥ =
 lim
𝑛→∞

𝑛∑︁
𝑘=0

𝐴𝑘

𝑘!

 ≤ lim
𝑛→∞

𝑛∑︁
𝑘=0

∥𝐴∥𝑘
𝑘!

= 𝑒∥𝐴∥ .

To establish (iii), note first of all that as 𝐴 and 𝐵 commute, the binom Newton’s formula
holds:

(𝐴 + 𝐵)𝑛 =
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝐴𝑘𝐵𝑛−𝑘

for all 𝑛 ∈ ℕ. The proof is readily the same as for real numbers, and can be done by
induction on 𝑛 ∈ ℕ for instance. Thus it follows that

𝑒𝐴𝑒𝐵 =

( ∞∑︁
𝑖=0

𝐴𝑖

𝑖!

) ( ∞∑︁
𝑗=0

𝐵 𝑗

𝑗!

)
=

∞∑︁
𝑘=0

( ∑︁
𝑖+ 𝑗=𝑘

𝐴𝑖

𝑖!
𝐵 𝑗

𝑗!

)
=

∞∑︁
𝑘=0

( 𝑘∑︁
𝑖=0

𝐴𝑖

𝑖!
𝐵𝑘−𝑖

(𝑘 − 𝑖)!

)
=

∞∑︁
𝑘=0

1
𝑘!

( 𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
𝐴𝑖𝐵𝑘−𝑖

)
=

∞∑︁
𝑘=0

1
𝑘!
(𝐴 + 𝐵)𝑘

= 𝑒𝐴+𝐵

as wished.
(9)Actually, we also use in the line just below the fact that (𝐴𝑘)∗ = (𝐴∗)𝑘 for any 𝐴 ∈ B(H) and 𝑘 ∈ ℕ,

as we proved earlier.
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Remark 1.40. Using Theorem 1.30 and Proposition 1.37, one can prove similar iden-
tities for bounded operators as the ones for real numbers. For instance, if𝛼,𝛽 > 0 and
𝐴 ∈ P(H), then 𝐴𝛼+𝛽 = 𝐴𝛼𝐴𝛽. Likewise, ln(𝐴𝛼) = 𝛼 ln(𝐴), and 𝐴𝛼 = exp(𝛼 ln(𝐴)).

1.5 Square roots and polar decomposition

The goal here is to introduce square roots of bounded operators. The definition is
exactly the same as for positive real numbers.

Definition 1.41. Let 𝐴 ∈ B(H).
A square root of 𝐴 is a bounded operator 𝐵 on H so that 𝐵2 = 𝐴.

When it exists, the square root of a bounded operator 𝐴 is denoted
√
𝐴 or 𝐴1/2.

A sufficient condition to guarantee the existence of a square root for an operator is
precisely, as for real numbers, to be positive.

Theorem 1.42. Let 𝐴 ∈ B(H) be positive.
Then 𝐴 has a unique positive square root 𝐵. Moreover, if 𝐴 is invertible, so is 𝐵.

Proof. Suppose that 𝐴 is positive. Then 𝜎(𝐴) ⊂ [0,∞), and as in the proof of Corollary
1.32 we consider 𝑓 ∈ 𝐶(𝜎(𝐴)) defined by 𝑓 (𝑡) =

√
𝑡, 𝑡 ∈ 𝜎(𝐴). As already seen,

𝐵 = 𝑓 (𝐴) is self-adjoint and satisfies 𝐵2 = 𝐴. Moreover, 𝐵 is positive by Corollary
1.36(i) and exactly as in Corollary 1.38 we establish that

√ · : B(H)+ −→ B(H)+

is a bijection. In particular 𝐵 is unique. Lastly, assume 𝐴 is invertible. 𝐴 commutes
with itself, so also with 𝑓 (𝐴) = 𝐵 by (vi) of Theorem 1.30. Thus, by the same result, 𝐵
commutes also with 𝐴−1 (since 𝑡 ↦−→ 1

𝑡
is indeed continuous on 𝜎(𝐴) ⊂ (0,∞)). Hence

one has

𝐵(𝐴−1𝐵) = 𝐴−1𝐵2 = 𝐴−1𝐴 = IdH , (𝐴−1𝐵)𝐵 = 𝐴−1𝐵2 = 𝐴−1𝐴 = IdH

and then 𝐵 is invertible of inverse 𝐴−1𝐵. This concludes the proof. □

Here also, the same remark as for the exponential applies: a more hand-by-hand
approach for building the square root of a positive operator 𝐴, followed for instance
in [12, theorem 4.6.14], consists in defining a sequence of polynomials in 𝐴 and using
completeness. This is exactly what we did above, in the proof of Proposition 1.29 and
Theorem 1.30.

As promised, we can now complete Example 1.8(iv).
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Corollary 1.43. An operator 𝑃 ∈ B(H) is positive if and only there exists 𝐴 ∈
B(H) so that 𝑃 = 𝐴∗𝐴.

Proof. One direction is Example 1.8(iv). Conversely, if 𝑃 is positive, let 𝐴 ··=
√
𝑃. Then

𝐴∗ =
√
𝑃 and 𝐴∗𝐴 =

√
𝑃
√
𝑃 = 𝑃. □

As for the exponential and the logarithm, we outline rules of computations with
square roots of bounded operators. They will be particularly useful in Chapter 3.

Corollary 1.44. Let 𝐴, 𝐵 ∈ B(H)+. The following hold.

(i) If 𝐴𝐵 = 𝐵𝐴, then
√
𝐴𝐵 =

√
𝐴
√
𝐵.

(ii) If 𝐴 is invertible, then
√
𝐴 is invertible and

(√
𝐴
)−1

=
√
𝐴−1.

(iii)
√𝐴 = √︁

∥𝐴∥.

Proof. (i) If 𝐴𝐵 = 𝐵𝐴, applying twice Theorem 1.30(vi) shows that
√
𝐴 commutes with√

𝐵. Now we observe that(√
𝐴
√
𝐵
)2

=
√
𝐴
√
𝐵
√
𝐴
√
𝐵 =

√
𝐴
√
𝐴
√
𝐵
√
𝐵 = 𝐴𝐵

meaning that
√
𝐴
√
𝐵 is a square root of 𝐴𝐵. The uniqueness part of Theorem 1.42 now

forces to have
√
𝐴𝐵 =

√
𝐴
√
𝐵, as announced.

(ii) The invertibility of
√
𝐴 has already been derived in Theorem 1.42, and an explicit

formula for its inverse can be found with point (i) of the present corollary (that we may
apply since 𝐴 commutes with its inverse):

√
𝐴−1

√
𝐴 =

√
𝐴−1𝐴 =

√︁
IdH = IdH =

√
𝐴𝐴−1 =

√
𝐴
√
𝐴−1.

The uniqueness of the inverse of an operator now ensures
(√
𝐴
)−1

=
√
𝐴−1.

(iii) is a consequence of the 𝐶∗−identity in B(H). Indeed, one has√𝐴2
=
√𝐴(√𝐴)∗ = √𝐴√𝐴 = ∥𝐴∥

whence
√𝐴 = √︁

∥𝐴∥. □

Now we can introduce polar decompositions for bounded operators.

Definition 1.45. Let 𝐴 ∈ B(H).
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A polar decomposition of 𝐴 is a factorization as

𝐴 = 𝑃𝑈

where𝑈 is unitary and 𝑃 is positive.

It turns out such a decomposition exists for any invertible operator.

Theorem 1.46. Let 𝐴 ∈ Aut(H). Then 𝐴 has a unique polar decomposition.

Proof. As 𝐴 is invertible, so are 𝐴∗ and 𝐴𝐴∗. Moreover, 𝐴𝐴∗ is positive (by Example
1.8(iv)), so it has a square root. Set 𝑃 ··=

√
𝐴𝐴∗, which is invertible by Theorem 1.42,

and𝑈 ··= 𝑃−1𝐴. Then 𝑃 is positive and 𝐴 = 𝑃𝑈. Additionally, we have

𝑈𝑈∗ = 𝑃−1𝐴𝐴∗(𝑃−1)∗ = (𝐴𝐴∗)−1/2𝐴𝐴∗(𝐴𝐴∗)−1/2 = IdH

and likewise
𝑈∗𝑈 = 𝐴∗(𝑃−1)∗𝑃−1𝐴 = 𝐴∗(𝐴𝐴∗)−1𝐴 = IdH .

Thus 𝑈 is unitary, and this proves the existence of a polar decomposition. For the
uniqueness part, suppose that 𝐴 = 𝑃𝑈 = 𝑃′𝑈′ with 𝑃, 𝑃′ positive and𝑈,𝑈′ ∈ U(H).
Then we have

𝐴𝐴∗ = 𝑃𝑈𝑈∗𝑃∗ = 𝑃2, 𝐴𝐴∗ = 𝑃′𝑈′(𝑈′)∗(𝑃′)∗ = (𝑃′)2

so 𝑃 and 𝑃′ are both positive square roots of the positive operator 𝐴𝐴∗. The uniqueness
part of Theorem 1.42 then forces 𝑃′ = 𝑃, and thus also

𝑈′ = (𝑃′)−1𝐴 = 𝑃−1𝐴 = 𝑈.

This concludes the proof. □

1.6 The weak operator topology on B(H)

Let us start the discussion on topologies for B(H) with the next lemma.

Lemma 1.47. Let 𝐴 ∈ B(H).
The maps 𝑋 ↦−→ 𝐴𝑋 , 𝑋 ↦−→ 𝑋𝐴 are continuous from (B(H), 𝜏∥·∥) to
(B(H), 𝜏∥·∥).
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Proof. Fix 𝐴 ∈ B(H). We show the continuity of 𝑋 ↦−→ 𝐴𝑋 , the other one is very
similar. If 𝐴 = 0, the claim is obvious, so we may suppose that 𝐴 ≠ 0. Using Theorem
A.10, let 𝜀 > 0, and set 𝛿 ··= 𝜀

∥𝐴∥ > 0. If 𝑋,𝑌 ∈ B(H) are so that ∥𝑋 −𝑌 ∥ < 𝛿, then

∥𝐴𝑋 − 𝐴𝑌 ∥ ≤ ∥𝐴∥∥𝑋 −𝑌 ∥ < ∥𝐴∥𝛿 = 𝜀

and the conclusion follows. □

As mentioned earlier, a norm ∥ · ∥ on a vector space 𝑋 provides a metric d𝑋 , and
this metric provides thus the structure of a topological space to 𝑋 . In general, the
topology obtained in this way has many open sets, and it is harder to show convergence
of sequences, or to get compact sets. However, as seen in Appendix A, compactness
for metrisable spaces is equivalent to sequential compactness, and we want to take
advantage of this to establish existence of objects with special properties (by extracting
a convergent subsequence of a well-chosen sequence generally).

The goal of this subsection is to introduce a new topology on the space B(H), which
is smaller than the norm topology 𝜏∥·∥.

This topology is called the weak operator topology, is denoted 𝜏𝑤, and is the initial
topology on B(H) generated by the family of linear functionals

F ··= {𝜔𝑢,𝑣 : B(H) −→ ℂ | 𝑢, 𝑣 ∈ H}

where

𝜔𝑢,𝑣 : B(H) −→ ℂ

𝐴 ↦−→ ⟨𝐴𝑢, 𝑣⟩.

In other words, 𝜏𝑤 is the topology generated by the subbasis

BF ··= {𝜔−1
𝑢,𝑣(𝑈) : 𝑢, 𝑣 ∈ H , 𝑈 ⊂ ℂ open}

and, in particular, sets of the form

𝑉 (𝐴; 𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . , 𝑢𝑛, 𝑣𝑛, 𝜀) = {𝐵 ∈ B(H) : |⟨(𝐴 − 𝐵)𝑢𝑖, 𝑣𝑖⟩| < 𝜀, 𝑖 = 1, . . . , 𝑛}

are a basis of neighbourhoods for 𝐴 in 𝜏𝑤. Furthermore, by Proposition A.39, a se-
quence (𝐴𝑛)𝑛∈ℕ converges to 𝐴 ∈ B(H) in 𝜏𝑤 if and only if 𝜔𝑢,𝑣(𝐴𝑛) −→ 𝜔𝑢,𝑣(𝐴) as
𝑛→ ∞, for all 𝑢, 𝑣 ∈ H , i.e. if and only if

⟨𝐴𝑛𝑢, 𝑣⟩ −→ ⟨𝐴𝑢, 𝑣⟩

as 𝑛→ ∞, for all 𝑢, 𝑣 ∈ H . In this case we say that (𝐴𝑛)𝑛∈ℕ converges weakly to 𝐴.
Let us note the following.

Lemma 1.48. The weak operator topology is smaller than the norm topology.
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Proof. Let𝑈 ∈ 𝜏𝑤, and fix 𝐴 ∈ 𝑈. As𝑈 is weakly open, there exists 𝑢1, 𝑣1, . . . , 𝑢𝑛, 𝑣𝑛 ∈
H and 𝜀 > 0 so that

𝑛⋂
𝑖=1

{𝐵 ∈ B(H) : |⟨(𝐴 − 𝐵)𝑢𝑖, 𝑣𝑖⟩| < 𝜀} ⊂ 𝑈.

Let then 𝛿𝑖 ··= 𝜀
1+∥𝑣𝑖∥∥𝑢𝑖∥ > 0 for all 𝑖 = 1, . . . , 𝑛 and 𝛿 ··= min(𝛿1, . . . , 𝛿𝑛) > 0.

By the Cauchy-Schwarz inequality, if 𝐵 ∈ B(H) is so that ∥𝐴 − 𝐵∥ < 𝛿, then

|⟨(𝐴 − 𝐵)𝑢𝑖, 𝑣𝑖⟩| ≤ ∥𝐴 − 𝐵∥∥𝑢𝑖∥∥𝑣𝑖∥
< 𝛿∥𝑢𝑖∥∥𝑣𝑖∥
≤ 𝛿𝑖∥𝑢𝑖∥∥𝑣𝑖∥

=
𝜀∥𝑢𝑖∥∥𝑣𝑖∥

1 + ∥𝑢𝑖∥∥𝑣𝑖∥
< 𝜀

for all 𝑖 = 1, . . . , 𝑛, whence the inclusion

{𝐵 ∈ B(H) : ∥𝐴 − 𝐵∥ < 𝛿} ⊂ {𝐵 ∈ B(H) : |⟨(𝐴 − 𝐵)𝑢𝑖, 𝑣𝑖⟩| < 𝜀}

for all 𝑖 = 1, . . . , 𝑛. Thus it follows that

{𝐵 ∈ B(H) : ∥𝐴 − 𝐵∥ < 𝛿} ⊂
𝑛⋂
𝑖=1

{𝐵 ∈ B(H) : |⟨(𝐴 − 𝐵)𝑢𝑖, 𝑣𝑖⟩| < 𝜀} ⊂ 𝑈

and hence 𝑈 is a neighbourhood of any of its elements in the norm topology. It is
therefore in 𝜏∥·∥. This concludes our proof. □

For the weak operator topology, left and right multiplication by a bounded operator
remain continuous maps.

Lemma 1.49. Let 𝐴 ∈ B(H).
The maps 𝑋 ↦−→ 𝐴𝑋 , 𝑋 ↦−→ 𝑋𝐴 are continuous from (B(H), 𝜏𝑤) to (B(H), 𝜏𝑤).

Proof. Let 𝜑 be the map sending 𝑋 ∈ B(H) to 𝐴𝑋 ∈ B(H). As 𝜏𝑤 is an initial
topology, we can use Proposition A.38 to prove that 𝜑 is continuous. It is therefore
enough to prove that the composition 𝜔𝑢,𝑣 ◦ 𝜑 : B(H) −→ ℂ is continuous, for any
fixed pair of vectors 𝑢, 𝑣 ∈ H . Let then 𝑢, 𝑣 ∈ H , and observe that

(𝜔𝑢,𝑣 ◦ 𝜑) (𝑋) = 𝜔𝑢,𝑣(𝐴𝑋) = ⟨𝐴𝑋𝑢, 𝑣⟩ = ⟨𝑋𝑢, 𝐴∗𝑣⟩ = 𝜔𝑢,𝐴∗𝑣(𝑋)

for all 𝑋 ∈ B(H). Hence 𝜔𝑢,𝑣 ◦ 𝜑 = 𝜔𝑢,𝐴∗𝑣 which is continuous by definition of 𝜏𝑤.
Thus 𝜑 is continuous.
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If 𝜓 is the map sending 𝑋 ∈ B(H) to 𝑋𝐴 ∈ B(H), the same reasoning applies,
observing this time that

(𝜔𝑢,𝑣 ◦𝜓) (𝑋) = ⟨𝑋𝐴𝑢, 𝑣⟩ = 𝜔𝐴𝑢,𝑣(𝑋)

for all 𝑋 ∈ B(H). Thus 𝜔𝑢,𝑣 ◦ 𝜓 = 𝜔𝐴𝑢,𝑣 for any 𝑢, 𝑣 ∈ H , which is continuous by
definition of 𝜏𝑤. We conclude that 𝜓 is continuous, and the lemma is established. □

As already mentioned, 𝜏𝑤 has less open sets than 𝜏∥·∥. However it still has enough
open sets to separate points.

Lemma 1.50. The weak operator topology on B(H) is Hausdorff.

Proof. We start by proving that the family F separates points, in the sense that if
𝐴 ≠ 𝐵 in B(H), there exists 𝑢, 𝑣 ∈ H so that 𝜔𝑢,𝑣(𝐴) ≠ 𝜔𝑢,𝑣(𝐵). If 𝐴 ≠ 𝐵, then
𝐴−𝐵 ≠ 0, and Lemma 1.3 thus ensures that there is 𝑢, 𝑣 ∈ H so that ⟨(𝐴−𝐵)𝑢, 𝑣⟩ ≠ 0.
This inner product being non-zero exactly means 𝜔𝑢,𝑣(𝐴) ≠ 𝜔𝑢,𝑣(𝐵), as claimed. Now,
if 𝐴 ≠ 𝐵 ∈ B(H), we pick 𝑢, 𝑣 ∈ H so that 𝜔𝑢,𝑣(𝐴) ≠ 𝜔𝑢,𝑣(𝐵), and as ℂ is Hausdorff,
there exists two open sets𝑈1,𝑈2 ⊂ ℂ with

𝑈1 ∩𝑈2 = ∅, 𝜔𝑢,𝑣(𝐴) ∈ 𝑈1, 𝜔𝑢,𝑣(𝐵) ∈ 𝑈2.

It follows that 𝜔−1
𝑢,𝑣(𝑈1),𝜔−1

𝑢,𝑣(𝑈2) are disjoint, and weakly open by definition of 𝜏𝑤.
Moreover 𝐴 ∈ 𝜔−1

𝑢,𝑣(𝑈1) and 𝐵 ∈ 𝜔−1
𝑢,𝑣(𝑈2). Hence 𝜏𝑤 is Hausdorff, and the proof is

complete. □

In particular, this guarantees uniqueness of limit for weakly convergent sequences
(Proposition A.24).

In fact, the weak operator topology is induced by a metric on bounded parts of
B(H).

Theorem 1.51. The weak operator topology is metrisable on bounded subsets of
B(H).

Proof. Here we only indicate the metric to consider, we check it is a metric, and we
provide additional references to complete the details.

Let (𝑒𝑛)𝑛∈ℕ be an orthonormal basis of H , and define a map d: B(H) × B(H) −→
[0,∞) by

d(𝐴, 𝐵) ··=
∑︁
𝑛,𝑚∈ℕ

1
2𝑛+𝑚

|⟨(𝐴 − 𝐵)𝑒𝑚, 𝑒𝑛⟩|

for any 𝐴, 𝐵 ∈ B(H). The first step to prove is that d is a well-defined metric on B(H).
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First of all, note that if 𝐴, 𝐵 ∈ B(H), the Cauchy-Schwarz inequality provides

1
2𝑛+𝑚

|⟨(𝐴 − 𝐵)𝑒𝑚, 𝑒𝑛⟩| ≤
1

2𝑛+𝑚
∥𝐴 − 𝐵∥∥𝑒𝑚∥∥𝑒𝑛∥ =

1
2𝑛+𝑚

∥𝐴 − 𝐵∥

and
∑︁
𝑛,𝑚∈ℕ

1
2𝑛+𝑚

< ∞, whence d(𝐴, 𝐵) is finite, and positive.

Also, d(𝐴, 𝐴) = 0 for any 𝐴 ∈ B(H). Conversely, if d(𝐴, 𝐵) = 0 for some 𝐴, 𝐵 ∈
B(H), then

⟨(𝐴 − 𝐵)𝑒𝑚, 𝑒𝑛⟩ = 0
for all 𝑛, 𝑚 ∈ ℕ. Thus 𝐴 and 𝐵 agree(10) on each 𝑒𝑛, 𝑛 ∈ ℕ, and by linearity they agree
on Vect((𝑒𝑛)𝑛∈ℕ). Since this subspace is dense in H (as (𝑒𝑛)𝑛∈ℕ is an orthonormal
basis), 𝐴 and 𝐵 must agree on H , so 𝐴 = 𝐵.

The symmetry of d is obvious from the definition, and if 𝐴, 𝐵,𝐶 ∈ B(H), then

d(𝐴,𝐶) =
∑︁
𝑛,𝑚∈ℕ

1
2𝑛+𝑚

|⟨(𝐴 − 𝐶)𝑒𝑚, 𝑒𝑛⟩|

≤
∑︁
𝑛,𝑚∈ℕ

1
2𝑛+𝑚

(
|⟨(𝐴 − 𝐵)𝑒𝑚, 𝑒𝑛⟩| + |⟨(𝐵 − 𝐶)𝑒𝑚, 𝑒𝑛⟩|

)
=

∑︁
𝑛,𝑚∈ℕ

1
2𝑛+𝑚

|⟨(𝐴 − 𝐵)𝑒𝑚, 𝑒𝑛⟩| +
∑︁
𝑛,𝑚∈ℕ

1
2𝑛+𝑚

|⟨(𝐵 − 𝐶)𝑒𝑚, 𝑒𝑛⟩|

= d(𝐴, 𝐵) + d(𝐵,𝐶)

which shows the triangle inequality. Thus d is a metric on B(H).
For the rest of the proof, we refer to [6, proposition 9.1.3]. □

On the other hand, the next result guarantees we have sufficiently reduced the
number of open sets to attain compactness.

Theorem 1.52. Let 𝐴 ∈ B(H). The closed norm ball

𝐵′
∥·∥ (𝐴, 𝜀) = {𝐵 ∈ B(H) : ∥𝐴 − 𝐵∥ ≤ 𝜀}

is weak operator compact.

Proof. Here also we only sketch the main idea of the proof, and we provide references
for the missing details.

(10)Indeed, the fact that ⟨(𝐴 − 𝐵)𝑒𝑚, 𝑒𝑛⟩ = 0 for all 𝑛, 𝑚 ∈ ℕ precisely means that, for a fixed 𝑚 ∈ ℕ,
(𝐴 − 𝐵)𝑒𝑚 is orthogonal to 𝑒𝑛, and thus by linearity to Vect((𝑒𝑛)𝑛∈ℕ). Since this space is dense in H ,
its orthogonal is reduced to 0, so (𝐴 − 𝐵)𝑒𝑚 = 0 for any fixed 𝑚 ∈ ℕ.

55



Master thesis 1.6 The weak operator topology on B(H)

It is enough to prove the theorem for 𝐴 = 0. Fix 𝜀 > 0, and for 𝑢, 𝑣 ∈ H , consider

𝐷𝑢,𝑣 ··= {𝑧 ∈ ℂ : |𝑧| ≤ 𝜀∥𝑢∥∥𝑣∥}

which is a compact subset of ℂ. Note that ⟨𝐵𝑢, 𝑣⟩ ∈ 𝐷𝑢,𝑣 if 𝐵 ∈ 𝐵′
∥·∥ (0, 𝜀). We can then

define

𝛼 : 𝐵′
∥·∥ (0, 𝜀) −→

∏
𝑢,𝑣∈H

𝐷𝑢,𝑣

𝐵 ↦−→ (⟨𝐵𝑢, 𝑣⟩)𝑢,𝑣∈H .

The map 𝛼 is injective, because if 𝛼(𝐵1) = 𝛼(𝐵2), then ⟨𝐵1𝑢, 𝑣⟩ = ⟨𝐵2𝑢, 𝑣⟩ for all
𝑢, 𝑣 ∈ H , whence 𝐵1 = 𝐵2 by Lemma 1.3. Next, we claim that 𝛼 is continuous. To
prove this, Proposition A.40 tells us it is enough to check the continuity of

𝜋𝑢,𝑣 ◦𝛼 : 𝐵′
∥·∥ (0, 𝜀) −→ 𝐷𝑢,𝑣

where 𝜋𝑢,𝑣 is the natural projection. Now Theorem A.28 (that applies since the weak
operator topology is metrisable on a bounded ball) ensures it is enough to check the
sequential continuity of this map. Take then (𝐴𝑛)𝑛∈ℕ a weakly convergent sequence
in 𝐵′

∥·∥ (0, 𝜀), and denote 𝐴 its weak limit. This means that ⟨𝐴𝑛𝑢, 𝑣⟩ −→ ⟨𝐴𝑢, 𝑣⟩ as
𝑛→ ∞, which says exactly that

(𝜋𝑢,𝑣 ◦𝛼) (𝐴𝑛) −→ (𝜋𝑢,𝑣 ◦𝛼) (𝐴)

as 𝑛→ ∞. Thus 𝛼 is continuous. It is then a continuous bijective map onto its range.
From there, one can show that its inverse is also continuous, and that its image is
closed in

∏
𝑢,𝑣 𝐷𝑢,𝑣. As the latter is compact by Tychonoff’s theorem (see Appendix A),

the image of 𝛼 is compact, and Theorem A.34 ensures then that 𝐵′
∥·∥ (0, 𝜀) is compact

for the weak operator topology. See [21, theorem 5.1.3] for further details. □
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2. The cone P(H)
This chapter is devoted to the study of the subset of positive invertible linear opera-

tors on a Hilbert space. We turn this set into a metric space, and we describe geodesics
for the corresponding distance. We define an isometric action of Aut(H) on this met-
ric space that preserves those geodesics. We establish the Löwner-Heinz inequality,
and we derive numerous operator inequalities, in particular the Corach-Porta-Recht
inequality and the Cordes inequality, following and completing the exposition of [18].
We show a convexity inequality for the distance between two geodesics.

2.1 A metric structure on P(H)

As before, fix a complex separable Hilbert space H .
First of all, observe that P(H) is not a vector subspace of B(H), because the zero

operator is not invertible. Also it is not closed under arbitrary linear combinations
or scalar multiplications: for instance −𝐴 ∉ P(H) if 𝐴 ∈ P(H). Nevertheless, it is
closed for multiplication by strictly positive scalars and for the sum.

Lemma 2.1. Let 𝐴, 𝐵 ∈ P(H), 𝜆 > 0. Then 𝜆𝐴, 𝐴 + 𝐵 ∈ P(H).

Proof. If 𝐴 ∈ P(H) and 𝜆 > 0, then

⟨(𝜆𝐴)𝑢, 𝑢⟩ = 𝜆⟨𝐴𝑢, 𝑢⟩ ≥ 0

for any 𝑢 ∈ H , and 𝜆𝐴 is invertible of inverse 1
𝜆𝐴

−1. This shows that 𝜆𝐴 ∈ P(H).
Now let 𝐴, 𝐵 ∈ P(H). Then

⟨(𝐴 + 𝐵)𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩ + ⟨𝐵𝑢, 𝑢⟩ ≥ 0

for any 𝑢 ∈ H , so 𝐴 + 𝐵 is positive. Moreover, as 𝐴, 𝐵 are invertible, Corollary 1.23
gives the existence of 𝜀1, 𝜀2 > 0 so that

⟨𝐴𝑢, 𝑢⟩ ≥ 𝜀1∥𝑢∥2, ⟨𝐵𝑢, 𝑢⟩ ≥ 𝜀2∥𝑢∥2

for all 𝑢 ∈ H . It is now enough to note that

⟨(𝐴 + 𝐵)𝑢, 𝑢⟩ ≥ (𝜀1 + 𝜀2)∥𝑢∥2

for all 𝑢 ∈ H to conclude that 𝐴+ 𝐵 is invertible, again by Corollary 1.23. Henceforth,
𝐴 + 𝐵 ∈ P(H). □

Being closed for the sum and for the multiplication by strictly positive scalars, we
say that P(H) is a cone inside B(H).
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This cone can be endowed with a metric structure, defining the map

d: P(H) × P(H) −→ [0,∞)
(𝐴, 𝐵) ↦−→ ∥ ln(𝐴−1/2𝐵𝐴−1/2)∥.

Before proving d is indeed a metric, we recall the basics from the theory of group
actions.

Definition 2.2. Let 𝑋 be a set, and 𝐺 be a group.
An action of 𝐺 on 𝑋 , denoted 𝐺↷ 𝑋 , is a map

𝐺 × 𝑋 −→ 𝑋

(𝑔, 𝑥) ↦−→ 𝑔 · 𝑥

so that 𝑒𝐺 · 𝑥 = 𝑥 for any 𝑥 ∈ 𝑋 and (𝑔ℎ) · 𝑥 = 𝑔 · (ℎ · 𝑥) for any 𝑥 ∈ 𝑋 and 𝑔, ℎ ∈ 𝐺.

When a group 𝐺 acts on a set 𝑋 , we call 𝑋 a 𝐺−space.
Equivalently, a group action is a group homomorphism 𝐺 −→ 𝑆(𝑋), where 𝑆(𝑋)

is the group of bijections on 𝑋 , equipped with the composition of applications.
We call a group action 𝐺 ↷ 𝑋 transitive if for any 𝑥, 𝑦 ∈ 𝑋 , there is 𝑔 ∈ 𝐺 so that

𝑦 = 𝑔 · 𝑥, and we call it faithful if for every 𝑔 ∈ 𝐺, 𝑔 ≠ 𝑒𝐺, there exists 𝑥 ∈ 𝑋 so that
𝑔 · 𝑥 ≠ 𝑥.

For a group action 𝐺↷ 𝑋 , we write O𝑥 for the orbit of 𝑥 ∈ 𝑋 , defined as

O𝑥 ··= {𝑦 ∈ 𝑋 : 𝑦 = 𝑔 · 𝑥 for some 𝑔 ∈ 𝐺}

while Stab(𝑥) stands for the stabilizer of 𝑥 ∈ 𝑋 :

Stab(𝑥) ··= {𝑔 ∈ 𝐺 : 𝑔 · 𝑥 = 𝑥}.

For 𝑥 ∈ 𝑋 , the map

𝜑𝑥 : 𝐺 −→ O𝑥
𝑔 ↦−→ 𝑔 · 𝑥

is well-defined, surjective, and if 𝑔, ℎ ∈ 𝐺 are so that 𝑔−1ℎ ∈ Stab(𝑥), then (𝑔−1ℎ) · 𝑥 =
𝑥, so ℎ ·𝑥 = 𝑔 ·𝑥, and thus 𝜑𝑥 (𝑔) = 𝜑𝑥 (ℎ). Therefore, 𝜑𝑥 passes to quotient and induces
a bijection of sets

𝐺/Stab(𝑥) −→ O𝑥.
Lastly, we denote 𝑋𝐺 the set of 𝐺−fixed points in 𝑋 , i.e.

𝑋𝐺 ··= {𝑥 ∈ 𝑋 : ∀𝑔 ∈ 𝐺, 𝑔 · 𝑥 = 𝑥}.

If (𝑋, d𝑋 ) is a 𝐺−metric space, we say 𝐺 acts by isometries on 𝑋 if

d𝑋 (𝑔 · 𝑥, 𝑔 · 𝑦) = d𝑋 (𝑥, 𝑦)
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for all 𝑔 ∈ 𝐺 and all 𝑥, 𝑦 ∈ 𝑋 . This is the same as requiring that the associated
homomorphism has image contained in Isom(𝑋) ⊂ 𝑆(𝑋), where the latter stands for
the subgroup of 𝑆(𝑋) consisting of isometries of 𝑋 .

A group action 𝐺↷ 𝑋 is said to be continuous if for any 𝑔 ∈ 𝐺 the map 𝑋 −→ 𝑋 ,
𝑥 ↦−→ 𝑔 · 𝑥 is continuous with respect to the topology induced by d𝑋 . Note that since
𝑥 ↦−→ 𝑔 · 𝑥 is a bijection for any 𝑔 ∈ 𝐺, whose inverse is 𝑥 ↦−→ 𝑔−1 · 𝑥, a group action
𝐺↷ 𝑋 is continuous if and only if 𝑥 ↦−→ 𝑔 · 𝑥 is a homeomorphism, for any 𝑔 ∈ 𝐺.

Let us now go back to positive invertible operators. We define an action of Aut(H)
on P(H) by

Aut(H) × P(H) −→ P(H)
(𝐴, 𝑃) ↦−→ 𝐴 · 𝑃 ··= 𝐴𝑃𝐴∗.

If 𝐴 is invertible and 𝑃 is positive, then

⟨𝐴𝑃𝐴∗𝑢, 𝑢⟩ = ⟨𝑃𝐴∗𝑢, 𝐴∗𝑢⟩ ≥ 0

for any 𝑢 ∈ H , so 𝐴𝑃𝐴∗ is positive. It is also an invertible operator as a product of
invertible operators. The above map is thus well-defined. It is in fact a group action,
since IdH · 𝑃 = IdH𝑃Id∗

H = 𝑃 for any 𝑃 ∈ P(H), and

(𝐴𝐵) · 𝑃 = (𝐴𝐵)𝑃(𝐴𝐵)∗ = 𝐴(𝐵𝑃𝐵∗)𝐴∗ = 𝐴 · (𝐵 · 𝑃).

for all 𝐴, 𝐵 ∈ Aut(H), 𝑃 ∈ P(H).
Here are two important properties of this action.

Lemma 2.3. The action Aut(H) ↷ P(H) is transitive and continuous.

Proof. For the transitivity, it is enough to prove that we can go from IdH ∈ P(H) to
any other 𝑃 ∈ P(H) by the action of an element of Aut(H). Fix such a 𝑃 ∈ P(H). Let
𝐴 ··=

√
𝑃, which is invertible by Theorem 1.42 since 𝑃 is invertible. Since the square

root of a positive operator is self-adjoint, we get

𝐴 · IdH = 𝐴𝐴∗ =
√
𝑃
√
𝑃 = 𝑃

establishing the transitivity. Let now 𝐴 ∈ Aut(H). The continuity of 𝑃 ↦−→ 𝐴𝑃𝐴∗

follows from Lemma 1.47 and the fact that the composition of continuous maps is a
continuous map (Example A.4(iv)). □

Let us then deduce another model for the set P(H).

Corollary 2.4. There is a bijection of sets

Aut(H)/U(H) � P(H).
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Proof. Since Aut(H) ↷ P(H) is transitive, any two positive invertible operators are
in the same orbit. We can then choose our favorite basepoint, namely IdH , and as
shown above there is a bijection of sets

Aut(H)/Stab(IdH ) −→ P(H).

Now Stab(IdH ) = {𝐵 ∈ Aut(H) : 𝐵𝐵∗ = IdH }, and since 𝐵 is invertible, the condition
𝐵𝐵∗ = IdH also implies 𝐵∗𝐵 = IdH , as seen right after Proposition 1.9. Henceforth,
Stab(IdH ) = U(H), and we are done. □

In the simple case where one of the operators is the identity IdH , we can compute
the distance explicitly.

Lemma 2.5. Let 𝐴 ∈ P(H). Then

d(IdH , 𝐴) = ∥ ln(𝐴)∥ = max(ln(∥𝐴∥), ln(∥𝐴−1∥)).

Proof. By Theorem 1.30(i), one has

∥ ln(𝐴)∥ = ∥ ln ∥𝐶(𝜎(𝐴))
= max

𝜆∈𝜎(𝐴)
| ln(𝜆) |

= max
(

ln
(

max
𝜆∈𝜎(𝐴)

𝜆

)
,− ln

(
min

𝜆∈𝜎(𝐴)
𝜆

))
= max

(
ln(∥𝐴∥),− ln

(
1

∥𝐴−1∥

))
= max(ln(∥𝐴∥), ln(∥𝐴−1∥))

where, for the fourth equality, we used Corollary 1.25(ii) and Theorem 1.35 to get

∥𝐴−1∥ = 𝑟(𝐴−1) = max
𝜇∈𝜎(𝐴−1)

𝜇 = max
𝜆∈𝜎(𝐴)

1
𝜆
=

1
min

𝜆∈𝜎(𝐴)
𝜆
.

This concludes the proof of the lemma. □

Here is the main result of this subsection.

Proposition 2.6. The map d is a metric on P(H). Moreover, Aut(H) acts by
isometries on (P(H), d).

Proof. We start by proving the second claim. Let 𝐴 ∈ Aut(H), 𝐵 ∈ P(H). By Theorem
1.46, 𝐴 has a polar decomposition 𝐴 = 𝑃𝑈 with 𝑃 positive and 𝑈 ∈ U(H). We then
compute that

d(𝐴 · IdH , 𝐴 · 𝐵) = d(𝐴𝐴∗, 𝐴𝐵𝐴∗)
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= d(𝑃𝑈𝑈∗𝑃∗, 𝑃𝑈𝐵𝑈∗𝑃)
= d(𝑃2, 𝑃𝑈𝐵𝑈∗𝑃)
= ∥ ln(𝑃−1𝑃𝑈𝐵𝑈∗𝑃𝑃−1)∥
= ∥ ln(𝑈𝐵𝑈∗)∥
= ∥𝑈 ln(𝐵)𝑈∗∥
= ∥ ln(𝐵)∥
= d(IdH , 𝐵)

where the third equality relies on the fact that 𝑈 is unitary and 𝑃 is self-adjoint.
The fourth is the definition of d, the sixth is Remark 1.31, and the seventh also uses
𝑈 ∈ U(H)(11). This computation allows us to handle the general case. Let now 𝐵,𝐶 ∈
P(H). Write 𝑆 ··= 𝐵1/2 and 𝑇 ··= 𝑆−1 · 𝐶 = 𝑆−1𝐶𝑆−1, to get

d(𝐴 · 𝐵, 𝐴 · 𝐶) = d(𝐴 · (𝑆 · IdH ), 𝐴 · (𝑆 · 𝑇))
= d((𝐴𝑆) · IdH , (𝐴𝑆) · 𝑇)
= d(IdH , 𝑇)
= d(𝑆 · IdH , 𝑆 · 𝑇)
= d(𝐵,𝐶)

using that Aut(H) ↷ P(H) is an action for the second equality, and the previous
computation for the third and fourth equality. Hence the action of Aut(H) preserves
the map d(12).

Now we turn to show that d is indeed a metric. The idea is to check directly prop-
erties of a metric in the special case where one of the operators is the identity, and
then handle the general case using invariance of d under the action of Aut(H). For
instance, if 𝐴 ∈ P(H), it follows from Lemma 2.5 that

d(IdH , 𝐴) = ∥ ln(𝐴)∥ = ∥ ln(𝐴−1)∥ = ∥ ln(𝐴−1/2IdH𝐴
−1/2)∥ = d(𝐴, IdH )

and if in addition 𝐵 ∈ P(H), we can write

d(𝐴, 𝐵) = d(IdH , 𝐴
−1/2 · 𝐵)

= d(𝐴−1/2 · 𝐵, IdH )
= d(𝐴1/2 · (𝐴−1/2 · 𝐵), 𝐴1/2 · IdH )
= d(𝐵, 𝐴)

which means that d is symmetric.
(11)In fact, we use here that if 𝑈 ∈ U(H) and 𝐴 ∈ B(H), then ∥𝑈𝐴∥ = ∥𝐴∥. Indeed, as 𝑈 is unitary

one has ∥𝑈∥ = ∥𝑈−1∥ = 1 (as a direct consequence of Proposition 1.9) and by submultiplicativity it
holds that ∥𝑈𝐴∥ ≤ ∥𝑈∥∥𝐴∥ = ∥𝐴∥. Additionally, ∥𝐴∥ = ∥𝑈−1𝑈𝐴∥ ≤ ∥𝑈−1∥∥𝑈𝐴∥ = ∥𝑈𝐴∥. Hence
∥𝑈𝐴∥ = ∥𝐴∥ as claimed.

(12)Note that strictly speaking, we cannot say it is an action by isometries at this point, because we
did not prove that d is a metric yet.
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For the triangle inequality, fix 𝐴, 𝐵 ∈ P(H), and observe that

d(𝐴, 𝐵) = ∥ ln(𝐴−1/2𝐵𝐴−1/2)∥
= max(ln(∥𝐴1/2𝐵−1𝐴1/2∥), ln(∥𝐴−1/2𝐵𝐴−1/2∥))
≤ max(ln(∥𝐴1/2∥∥𝐵−1∥∥𝐴1/2∥), ln(∥𝐴−1/2∥∥𝐵∥∥𝐴−1/2∥))
= max(ln(∥𝐴∥∥𝐵−1∥), ln(∥𝐴−1∥∥𝐵∥))
= max(ln(∥𝐴∥) + ln(∥𝐵−1∥), ln(∥𝐴−1∥) + ln(∥𝐵∥))
≤ max(ln(∥𝐴∥), ln(∥𝐴−1∥)) + max(ln(∥𝐵∥), ln(∥𝐵−1∥))
= ∥ ln(𝐴)∥ + ∥ ln(𝐵)∥
= d(𝐴, IdH ) + d(IdH , 𝐵)

using definition of d for the first and last equality. The second and the fifth one follows
from Lemma 2.5, while the third one is an application of the formula ∥𝑆2∥ = ∥𝑆∥2

for self-adjoint operators (Proposition 1.5(iv)). The first inequality follows from the
submultiplicativity of the norm. This computation implies the triangle inequality for
arbitrary operators 𝐴, 𝐵,𝐶 ∈ P(H), as

d(𝐴,𝐶) = d(𝐵−1/2 · 𝐴, 𝐵−1/2 · 𝐶)
≤ d(𝐵−1/2 · 𝐴, IdH ) + d(IdH , 𝐵

−1/2 · 𝐶)
= d(𝐴, 𝐵) + d(𝐵,𝐶)

using twice that d is invariant under the action of Aut(H), and the above computation
to get the upper bound.

Finally, in the case of a distance equal to 0, we have

d(𝐴, 𝐵) = 0 ⇐⇒ ∥ ln(𝐴−1/2𝐵𝐴−1/2)∥ = 0
⇐⇒ ln(𝐴−1/2𝐵𝐴−1/2) = 0
⇐⇒ 𝐴−1/2𝐵𝐴−1/2 = IdH
⇐⇒ 𝐴 = 𝐵.

Here the third equivalence relies on ln : P(H) −→ S(H) being a bijection. We con-
clude that d is a metric on P(H), and that Aut(H) acts by isometries on (P(H), d). □

2.2 Geodesics in P(H)

Once we defined a distance on a set, one can ask whether two distinct points of the
set can always be joined by a path compatible with this distance. Such paths are called
geodesics, and this part aims at proving that (P(H), d) is a geodesic metric space.

More precisely, if (𝑋, d𝑋 ) is a metric space and 𝑥, 𝑦 ∈ 𝑋 , a geodesic between 𝑥, 𝑦 ∈ 𝑋
is an isometric map 𝜎 : 𝐼 −→ 𝑋 , where 𝐼 = [𝑎, 𝑏] ⊂ ℝ is an interval, i.e. a map so that

d𝑋 (𝜎(𝑡),𝜎(𝑡′)) = |𝑡′ − 𝑡 | (3)
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for any 𝑡, 𝑡′ ∈ 𝐼, and so that 𝜎(𝑎) = 𝑥, 𝜎(𝑏) = 𝑦. We do not require 𝜎 to be surjective,
whence the term "isometric map" rather than "isometry". Note that preserving the
distance forces to have |𝑏 − 𝑎| = d𝑋 (𝑥, 𝑦), and up to pre-composing with a translation,
we may assume 𝑎 = 0 and 𝑏 = d𝑋 (𝑥, 𝑦). Lastly, it will be convenient to rescale 𝐼 =

[0, d𝑋 (𝑥, 𝑦)] to the unit interval [0, 1], which turns condition (3) above in

d𝑋 (𝜎(𝑡),𝜎(𝑡′)) = d𝑋 (𝑥, 𝑦) |𝑡′ − 𝑡 |, ∀𝑡, 𝑡′ ∈ [0, 1].

To sum up, a geodesic between 𝑥, 𝑦 ∈ 𝑋 is an isometric map between the unit inter-
val equipped with the euclidean distance multiplied by d𝑋 (𝑥, 𝑦) and the metric space
(𝑋, d𝑋 ).

We say that 𝑋 is a geodesic metric space if there exists a geodesic between 𝑥 and 𝑦
for any pair of points 𝑥, 𝑦 ∈ 𝑋 . Moreover, 𝑋 is uniquely geodesic if there is a unique
geodesic between 𝑥 and 𝑦, for any 𝑥, 𝑦 ∈ 𝑋 .

Example 2.7. A normed space (𝑋, ∥ · ∥) is a metric space for the natural distance
d𝑋 (𝑥, 𝑦) ··= ∥𝑥 − 𝑦∥, 𝑥, 𝑦 ∈ 𝑋 . It is furthermore a geodesic metric space, as for any
𝑥, 𝑦 ∈ 𝑋 the map

𝜎 : [0, 1] −→ 𝑋

𝑡 ↦−→ (1 − 𝑡)𝑥 + 𝑡𝑦

is a geodesic between 𝑥 and 𝑦, because 𝜎(0) = 𝑥, 𝜎(1) = 𝑦, and

d𝑋 (𝜎(𝑡),𝜎(𝑡′)) = ∥𝜎(𝑡′) − 𝜎(𝑡)∥
= ∥(1 − 𝑡′)𝑥 + 𝑡′𝑦 − (1 − 𝑡)𝑥 − 𝑡𝑦∥
= ∥(𝑡 − 𝑡′) (𝑥 − 𝑦)∥
= |𝑡′ − 𝑡 |d𝑋 (𝑥, 𝑦)

for all 𝑡, 𝑡′ ∈ [0, 1]. Additionally, 𝑋 is uniquely geodesic if and only if its unit ball
is strictly convex, in the sense that ∥(1 − 𝑡)𝑦1 + 𝑡𝑦2∥ < 1 for all distinct unit vectors
𝑦1, 𝑦2 ∈ 𝑋 and 𝑡 ∈ (0, 1). To see this, note that if [𝑥, 𝑦] denotes the geodesic segment
between 𝑥 and 𝑦 we have just built, then 𝑋 is uniquely geodesic if and only if for any
𝑥, 𝑥′, 𝑦 ∈ 𝑋 , 𝑥′ ∉ [𝑥, 𝑦] =⇒ d𝑋 (𝑥, 𝑦) < d𝑋 (𝑥, 𝑥′) + d𝑋 (𝑥′, 𝑦). Letting 𝑥1 ··= 𝑥′ − 𝑥,
𝑥2 ··= 𝑦 − 𝑥′, the last condition is equivalent to ∥𝑥1 + 𝑥2∥ < ∥𝑥1∥ + ∥𝑥2∥ whenever 𝑥1, 𝑥2
are linearly independent. Let then 𝑥1, 𝑥2 ∈ 𝑋 be linearly independent, and observe
that

𝑥1 + 𝑥2 = (∥𝑥1∥ + ∥𝑥2∥)
(

𝑥1
∥𝑥1∥ + ∥𝑥2∥

+ 𝑥2
∥𝑥1∥ + ∥𝑥2∥

)
= (∥𝑥1∥ + ∥𝑥2∥)

(
∥𝑥1∥

∥𝑥1∥ + ∥𝑥2∥
𝑥1
∥𝑥1∥

+ ∥𝑥2∥
∥𝑥1∥ + ∥𝑥2∥

𝑥2
∥𝑥2∥

)
= (∥𝑥1∥ + ∥𝑥2∥)((1 − 𝑡)𝑦1 + 𝑡𝑦2)

where 𝑡 ··= ∥𝑥2∥
∥𝑥1∥+∥𝑥2∥ ∈ (0, 1) and 𝑦1 ··= 𝑥1

∥𝑥1∥ , 𝑦2 ··= 𝑥2
∥𝑥2∥ are unit vectors. Thus ∥𝑥1 + 𝑥2∥ <

∥𝑥1∥ + ∥𝑥2∥ if and only if ∥(1 − 𝑡)𝑦1 + 𝑡𝑦2∥ < 1 for every 𝑡 ∈ (0, 1) and unit vectors
𝑦1, 𝑦2 ∈ 𝑋 , i.e. the unit ball of 𝑋 is strictly convex.
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From this result, it follows that ℝ𝑛 equipped with the euclidean norm ∥ · ∥2 (and
thus the associated euclidean distance d2) is uniquely geodesic. However, if we choose
rather the norm ∥ · ∥1 or ∥ · ∥∞, defined as

∥(𝑥1, . . . , 𝑥𝑛)∥1 ··=
𝑛∑︁
𝑘=1

|𝑥𝑘 |, ∥(𝑥1, . . . , 𝑥𝑛)∥∞ ··= max( |𝑥1 |, . . . , |𝑥𝑛 |)

for (𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛, the metric spaces (ℝ𝑛, d1), (ℝ𝑛, d∞) are not uniquely geodesic,
as their unit balls are not strictly convex (cf. Figure 1).

Figure 1: Unit balls in (ℝ2, d1), (ℝ2, d2) and (ℝ2, d∞)

For instance, in (ℝ2, d∞), the two maps 𝜎1,𝜎2 : [0, 1] −→ ℝ2 defined as

𝜎1(𝑡) ··= (𝑡, 0), 𝜎2(𝑡) ··=
{
(𝑡, 𝑡) if 0 ≤ 𝑡 ≤ 1

2
(𝑡, 1 − 𝑡) if 1

2 ≤ 𝑡 ≤ 1

are both geodesics between (0, 0) and (1, 0).
For us, the most important example of geodesic metric space will be (P(H), d).

Lemma 2.8. Let 𝐴, 𝐵 ∈ P(H). The map

𝜎(𝐴, 𝐵, ·) : [0, 1] −→ P(H)
𝑡 ↦−→ 𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡𝐴1/2

is a geodesic between 𝐴 and 𝐵. Moreover, the action of Aut(H) on P(H) pre-
serves those geodesics, i.e.

𝜎(𝐴 · 𝐵, 𝐴 · 𝐶, 𝑡) = 𝐴 · 𝜎(𝐵,𝐶, 𝑡)

for any 𝐴 ∈ Aut(H), 𝐵,𝐶 ∈ P(H) and 𝑡 ∈ [0, 1].

Proof. First of all, note that 𝐴−1/2𝐵𝐴−1/2 = 𝐴−1/2 · 𝐵 ∈ P(H) if 𝐴, 𝐵 ∈ P(H). Hence(
𝐴−1/2𝐵𝐴−1/2) 𝑡 ∈ P(H)

for any 𝑡 ∈ [0, 1], by Corollary 1.36, and thus

𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡𝐴1/2 = 𝐴1/2 ·
(
𝐴−1/2𝐵𝐴−1/2) 𝑡 ∈ P(H)
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as well. Hence 𝜎(𝐴, 𝐵, ·) is well-defined. We also have 𝜎(𝐴, 𝐵, 0) = 𝐴1/2IdH𝐴
1/2 = 𝐴

and
𝜎(𝐴, 𝐵, 1) = 𝐴1/2(𝐴−1/2𝐵𝐴−1/2)𝐴1/2 = 𝐵.

Now, if 𝑡, 𝑡′ ∈ [0, 1], we compute that

d
(
𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐴, 𝐵, 𝑡′)

)
= d

(
𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡𝐴1/2, 𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡′𝐴1/2)

= d
(
𝐴1/2 ·

(
𝐴−1/2𝐵𝐴−1/2) 𝑡, 𝐴1/2 ·

(
𝐴−1/2𝐵𝐴−1/2) 𝑡′ )

= d
( (
𝐴−1/2𝐵𝐴−1/2) 𝑡, (𝐴−1/2𝐵𝐴−1/2) 𝑡′ )

=
 ln

( (
𝐴−1/2𝐵𝐴−1/2)−𝑡/2 (

𝐴−1/2𝐵𝐴−1/2) 𝑡′ (𝐴−1/2𝐵𝐴−1/2)−𝑡/2)
=
 ln

( (
𝐴−1/2𝐵𝐴−1/2) 𝑡′−𝑡)

= ∥(𝑡′ − 𝑡) ln(𝐴−1/2𝐵𝐴−1/2)∥
= |𝑡′ − 𝑡 |d(𝐴, 𝐵)

using the fact that Aut(H) acts by isometries on P(H) for the third equality. The
fifth and the sixth relies on Remark 1.40, and the seventh uses the definition of d.
This proves that 𝜎(𝐴, 𝐵, ·) is a geodesic between 𝐴 and 𝐵.

We now turn our attention to the second claim. Fix 𝐴 ∈ Aut(H), 𝐵 ∈ P(H).
Write 𝐴 = 𝑃𝑈 as in Theorem 1.46, with 𝑃 positive and 𝑈 unitary. Noticing that
𝐴𝐴∗ = 𝑃𝑈𝑈∗𝑃∗ = 𝑃2, we have

𝜎(𝐴 · IdH , 𝐴 · 𝐵, 𝑡) = 𝜎(𝐴𝐴∗, 𝐴𝐵𝐴∗, 𝑡)
= (𝐴𝐴∗)1/2 ((𝐴𝐴∗)−1/2𝐴𝐵𝐴∗(𝐴𝐴∗)−1/2) 𝑡 (𝐴𝐴∗)−1/2

= 𝑃
(
𝑃−1𝑃𝑈𝐵𝑈∗𝑃∗𝑃−1) 𝑡𝑃

= 𝑃
(
𝑈𝐵𝑈−1) 𝑡𝑃

= 𝑃𝑈𝐵𝑡𝑈∗𝑃∗

= 𝐴𝐵𝑡𝐴∗

= 𝐴 · 𝜎(IdH , 𝐵, 𝑡).

for any 𝑡 ∈ [0, 1]. Here the fifth equality is Remark 1.31, and others use constantly
that 𝑃 is self-adjoint and 𝑈 is unitary. If now 𝐵,𝐶 ∈ P(H) and 𝐴 ∈ Aut(H), we use
this computation to generalize, in the same spirit as for Proposition 2.6: set 𝑆 ··= 𝐵1/2

and 𝑇 ··= 𝑆−1 · 𝐶 = 𝑆−1𝐶𝑆−1. It follows that

𝜎(𝐴 · 𝐵, 𝐴 · 𝐶, 𝑡) = 𝜎((𝐴𝑆) · IdH , (𝐴𝑆) · 𝑇, 𝑡)
= (𝐴𝑆) · 𝜎(IdH , 𝑇, 𝑡)
= 𝐴 · (𝑆 · 𝜎(IdH , 𝑇, 𝑡))
= 𝐴 · 𝜎(𝑆 · IdH , 𝑆 · 𝑇, 𝑡)
= 𝐴 · 𝜎(𝐵,𝐶, 𝑡)

for any 𝑡 ∈ [0, 1], establishing the desired claim and completing the proof. □
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Unless stated otherwise, in the sequel the words "the geodesic between 𝐴 and 𝐵"
with 𝐴, 𝐵 ∈ P(H) always refer to the geodesic provided by Lemma 2.8.

Let us close this subsection introducing another terminology.

Definition 2.9. Let 𝑋 be a geodesic metric space. For any 𝑥, 𝑦 ∈ 𝑋 , fix a geodesic
𝜎(𝑥, 𝑦, ·) : [0, 1] −→ 𝑋 between 𝑥 and 𝑦.
𝐴 ⊂ 𝑋 is called metrically convex if 𝜎(𝑥, 𝑦, 𝑡) ∈ 𝐴 for any 𝑥, 𝑦 ∈ 𝐴 and 𝑡 ∈ [0, 1].

2.3 The Löwner-Heinz inequality

Given four operators 𝐴, 𝐵,𝐶, 𝐷 ∈ P(H), the maps

𝜎(𝐴, 𝐵, ·), 𝜎(𝐶, 𝐷, ·) : [0, 1] −→ P(H)

are geodesics connecting 𝐴 to 𝐵 and 𝐶 to 𝐷 respectively, and we now wonder how
behaves the distance between two geodesics with respect to the distance between 𝐴

and 𝐶, and 𝐵 and 𝐷. In a next part, we will establish a convexity inequality for the
function

[0, 1] −→ [0,∞), 𝑡 ↦−→ d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)).
The proof will require several operator inequalities. In this part, we state and establish
the first one of those, called the Löwner-Heinz inequality.

First, let us precise in which way we compare bounded operators.

Definition 2.10. Let 𝐴, 𝐵 ∈ B(H) be self-adjoint.
We say that 𝐴 is smaller than 𝐵, or 𝐵 is larger than 𝐴, if 𝐵 − 𝐴 is positive.

If 𝐴 is smaller than 𝐵, we write 𝐴 ≤ 𝐵 or 𝐵 ≥ 𝐴. With this notation, 𝐴 ∈ B(H) is
positive if 𝐴 ≥ 0.

The relation ≤ is a partial, but not total, order on the class of self-adjoint operators
on H . Indeed, for 𝐴 ∈ S(H), the operator 𝐴 − 𝐴 = 0 is positive, so 𝐴 ≤ 𝐴. Also, if
𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶, the operator 𝐶 − 𝐴 = (𝐶 − 𝐵) + (𝐵 − 𝐴) is positive because it is the
sum of two positive operators (Lemma 2.1), so 𝐴 ≤ 𝐶. Finally, if 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴, we
have

⟨𝐴𝑢, 𝑢⟩ = ⟨𝐵𝑢, 𝑢⟩
for any 𝑢 ∈ H , which provides ⟨(𝐴 − 𝐵)𝑢, 𝑢⟩ = 0 for any 𝑢 ∈ H . Lemma 1.3 now
implies 𝐴 − 𝐵 = 0, so 𝐴 = 𝐵.

Moreover, this relation enjoys several useful properties for computations with pos-
itive operators.
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Proposition 2.11. Let 𝐴, 𝐵 ≥ 0, and 𝐶 ∈ S(H). The following properties hold.

(i) If 𝐴 ≤ 𝐵, then ∥𝐴∥ ≤ ∥𝐵∥.

(ii) If 𝐴 ≤ 𝐵, then 𝐴 + 𝐶 ≤ 𝐵 + 𝐶.

(iii) If 𝐴 ≤ 𝐵 and 𝜆 > 0, then 𝜆𝐴 ≤ 𝜆𝐵.

(iv) 𝐴 ≤ IdH if and only if ∥𝐴∥ ≤ 1.

(v) If 𝐴 is invertible, 𝐴 ≤ IdH if and only if 𝐴−1 ≥ IdH .

Proof. (i) By [6, theorem 2.2.13], [13, theorem 1.12] and the fact that 𝐴, 𝐵 are positive,
their norms can be computed as

∥𝐴∥ = sup
∥𝑢∥=1

⟨𝐴𝑢, 𝑢⟩, ∥𝐵∥ = sup
∥𝑢∥=1

⟨𝐵𝑢, 𝑢⟩.

By assumption, 𝐵 ≥ 𝐴 so 𝐵 = 𝐴 + 𝑃 where 𝑃 is positive. For 𝑢 ∈ H with ∥𝑢∥ = 1, we
then obtain ⟨𝐵𝑢, 𝑢⟩ = ⟨𝐴𝑢, 𝑢⟩ + ⟨𝑃𝑢, 𝑢⟩ ≥ ⟨𝐴𝑢, 𝑢⟩ and thus

∥𝐵∥ = sup
∥𝑢∥=1

⟨𝐵𝑢, 𝑢⟩ ≥ sup
∥𝑢∥=1

⟨𝐴𝑢, 𝑢⟩ = ∥𝐴∥.

(ii) Directly, (𝐵 + 𝐶) − (𝐴 + 𝐶) = 𝐵 − 𝐴 which is positive by assumption, whence the
claim.
(iii) If 𝐴 ≤ 𝐵 and 𝜆 > 0, then 𝐵−𝐴 ≥ 0, so 𝜆(𝐵−𝐴) ≥ 0 by Lemma 2.1 (more precisely,
by the proof of 2.1, as 𝐴, 𝐵 need not to be invertible here). Expanding the left-hand
side and using (ii) with 𝐶 = 𝜆𝐴, one gets 𝜆𝐵 ≥ 𝜆𝐴.
(iv) If 𝐴 ≤ IdH , (i) gives directly ∥𝐴∥ ≤ ∥IdH ∥ = 1. Conversely, assume that ∥𝐴∥ ≤ 1.
We have then

max
𝜆∈𝜎(𝐴)

𝜆 = 𝑟(𝐴) = ∥𝐴∥ ≤ 1

and as 𝐴 is positive it follows that 𝜎(𝐴) ⊂ [0, 1]. Thus 𝜎(𝐴 − IdH ) ⊂ (−∞, 0] by
Lemma 1.16, whence

𝜎(IdH − 𝐴) = {−𝑡 : 𝑡 ∈ 𝜎(𝐴 − IdH )} ⊂ [0,∞).
As IdH − 𝐴 is self-adjoint and has positive spectrum, we conclude from Corollary
1.32(iii) that IdH − 𝐴 is positive. Thus 𝐴 ≤ IdH and point (iv) is proved.
(v) Since 𝑋 ↦−→ 𝑋−1 is an involution on P(H) and Id−1

H = IdH , it is enough to prove
that 𝐴 ≤ IdH implies 𝐴−1 ≥ IdH .

If 𝐴 is invertible and 𝐴 ≤ IdH , then 𝜎(𝐴) ⊂ (0, 1], and Theorem 1.35 ensures that
𝜎(𝐴−1) = {𝜆−1 : 𝜆 ∈ 𝜎(𝐴)} ⊂ [1,∞).

It follows from Lemma 1.16 that 𝜎(𝐴−1− IdH ) = 𝜎(𝐴−1) −1 ⊂ [0,∞), and additionally
𝐴−1 − IdH is self-adjoint, as the difference of two self-adjoint operators. Hence we
conclude from Corollary 1.32(iii) that 𝐴−1 − IdH is positive, as wished. □
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One must see in this result natural analogs of the properties that hold for positive
real numbers. However, some other properties may fail. For instance, it is not true
that for 𝐴 ∈ P(H), 𝐴 ≥ IdH if and only if ∥𝐴∥ ≥ 1. It is true that having 𝐴 ≥ IdH
implies ∥𝐴∥ ≥ 1, but the converse does not hold. Consider for instance the operator

𝐴 =

(
2 0
0 1

2

)
on H = ℂ2. It has norm larger than 1, but is not larger than Idℂ2, as one of its
eigenvalues is 1

2 < 1.
Additionally, some properties fail because operators do not necessarily commute,

unlike to real numbers. The next remark provides an example.

Remark 2.12. In general, it is not true that if 𝐴 ≤ 𝐵 and 𝐶 ≥ 0, then 𝐴𝐶 ≤ 𝐵𝐶.
Consider for instance the operators

𝐴 =

(
1 0
0 0

)
, 𝐵 =

(
2 0
0 0

)
, 𝐶 =

(
1 1
1 1

)
.

on H = ℂ2. The operator 𝐶 is positive, because it is self-adjoint and its eigenvalues

are 0 and 2. Also 𝐵− 𝐴 = 𝐴 ≥ 0, but (𝐵− 𝐴)𝐶 =

(
1 1
0 0

)
is not positive, since it is even

not self-adjoint.

However, and we will use this below, it is true that

𝐴 ≤ 𝐵, 𝐶 ∈ Aut(H) =⇒ 𝐶𝐴𝐶∗ ≤ 𝐶𝐵𝐶∗. (4)

Indeed, 𝐶𝐵𝐶∗ − 𝐶𝐴𝐶∗ = 𝐶(𝐵 − 𝐴)𝐶∗ = 𝐶 · (𝐵 − 𝐴) is the result of the action of 𝐶 on
the positive operator 𝐵 − 𝐴, and we proved above that such operators are positive. In
particular, if 𝐴, 𝐵 ≥ 0, 𝐴 ≤ 𝐵, and 𝐶 ∈ Aut(H), then

∥𝐶𝐴𝐶∗∥ ≤ ∥𝐶𝐵𝐶∗∥

combining (4) and Proposition 2.11(i).
The following fact will be useful in the proof of the Löwner-Heinz inequality.

Lemma 2.13. Let 𝐴 ∈ P(H). The map

[0, 1] −→ B(H)
𝑡 ↦−→ 𝐴𝑡

is continuous.
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Proof. If 𝐴 = IdH , we are looking at a constant map, which is continuous by Example
A.4(ii). Suppose then 𝐴 ≠ IdH . In particular ∥ ln(𝐴)∥ = d(IdH , 𝐴) > 0. Fix 𝜀 > 0, and
let 𝛿 ··= 1

∥ ln(𝐴)∥ ln
(
1 + 𝜀

𝑒∥ ln(𝐴) ∥

)
> 0. Let 𝑡, 𝑡′ ∈ [0, 1] be so that |𝑡′ − 𝑡 | < 𝛿. We have

∥𝐴𝑡 − 𝐴𝑡′ ∥ = ∥𝑒𝑡 ln(𝐴) − 𝑒𝑡′ ln(𝐴) ∥
= ∥𝑒𝑡 ln(𝐴) (IdH − 𝑒(𝑡′−𝑡) ln(𝐴))∥
≤ ∥𝑒𝑡 ln(𝐴) ∥∥IdH − 𝑒(𝑡′−𝑡) ln(𝐴) ∥.

by submultiplicativity of the norm. The first factor is bounded by 𝑒∥ ln(𝐴)∥ as 𝑡 ≤ 1. To
bound the second factor, we go through the definition of 𝑒(𝑡′−𝑡) ln(𝐴), as the limit of a
Cauchy sequence in B(H) (cf. Remark 1.39), and we obtain

∥IdH − 𝑒(𝑡′−𝑡) ln(𝐴) ∥ =
 − ∞∑︁

𝑘=1

((𝑡′ − 𝑡) ln(𝐴))𝑘
𝑘!


≤

∞∑︁
𝑘=1

|𝑡′ − 𝑡 |𝑘∥ ln(𝐴)∥𝑘
𝑘!

= 𝑒|𝑡
′−𝑡 |∥ ln(𝐴)∥ − 1.

Hence ∥𝐴𝑡 − 𝐴𝑡′ ∥ ≤ 𝑒∥ ln(𝐴)∥ (𝑒|𝑡′−𝑡 |∥ ln(𝐴)∥ − 1) and the latter is strictly smaller than 𝜀
since |𝑡′ − 𝑡 | < 𝛿. This concludes the proof. □

Another useful fact will be the density of the dyadic rational numbers into the real
numbers. We denote the set of dyadic rational numbers by ℤ[ 1

2], and explicitly

ℤ

[
1
2

]
=
{ 𝑎

2𝑏
: 𝑎 ∈ ℤ, 𝑏 ∈ ℕ

}
.

They form a dense subset of ℝ, as for any 𝑥 ∈ ℝ, the sequence
( ⌊2𝑛𝑥⌋

2𝑛
)
𝑛∈ℕ lies in ℤ[ 1

2]
and converges to 𝑥 ∈ ℝ.

We are now ready to establish the Löwner-Heinz inequality.

Theorem 2.14. Let 𝐴, 𝐵 ≥ 0. If 𝐴 ≥ 𝐵 then 𝐴𝑡 ≥ 𝐵𝑡 for any 𝑡 ∈ [0, 1].

Proof. To start, suppose that 𝐴 and 𝐵 are invertible, and that the inequality holds
for some 𝛼,𝛽 ∈ [0, 1]. We show it holds for 𝛼+𝛽

2 as well. By hypothesis, 𝐵𝛼 ≤ 𝐴𝛼,
so 𝐴−𝛼/2𝐵𝛼𝐴−𝛼/2 ≤ IdH by Remark 2.12. It follows that ∥𝐴−𝛼/2𝐵𝛼𝐴−𝛼/2∥ ≤ 1 by
Proposition 2.11(iv), whence

∥𝐵𝛼/2𝐴−𝛼/2∥2 = ∥(𝐵𝛼/2𝐴−𝛼/2)∗𝐵𝛼/2𝐴−𝛼/2∥ = ∥𝐴−𝛼/2𝐵𝛼𝐴−𝛼/2∥ ≤ 1.
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using the 𝐶∗−identity in B(H) for the first equality and the self-adjointness of 𝐴−𝛼/2

for the second. In particular, ∥𝐵𝛼/2𝐴−𝛼/2∥ ≤ 1. The same reasoning, using the as-
sumption 𝐵𝛽 ≤ 𝐴𝛽, yields ∥𝐴−𝛽/2𝐵𝛽/2∥ ≤ 1. Now,

𝐴−(𝛼+𝛽)/4𝐵(𝛼+𝛽)/2𝐴−(𝛼+𝛽)/4 = 𝐴−(𝛼+𝛽)/4 · 𝐵(𝛼+𝛽)/2

is positive, so we get

∥𝐴−(𝛼+𝛽)/4𝐵(𝛼+𝛽)/2𝐴−(𝛼+𝛽)/4∥ = 𝑟
(
𝐴−(𝛼+𝛽)/4𝐵(𝛼+𝛽)/2𝐴−(𝛼+𝛽)/4)

= 𝑟
(
𝐴(𝛼−𝛽)/4𝐴−(𝛼+𝛽)/4𝐵(𝛼+𝛽)/2𝐴−(𝛼+𝛽)/4𝐴(𝛽−𝛼)/4)

= 𝑟
(
𝐴−𝛽/2𝐵(𝛼+𝛽)/2𝐴−𝛼/2)

≤ ∥𝐴−𝛽/2𝐵(𝛼+𝛽)/2𝐴−𝛼/2∥
≤ ∥𝐴−𝛽/2𝐵𝛽/2∥∥𝐵𝛼/2𝐴−𝛼/2∥
≤ 1

using Corollary 1.25(ii) for the first equality, Proposition 1.17 for the second one, and
Proposition 1.12 for the first inequality. Using once again Proposition 2.11(iv), we see
that

𝐴−(𝛼+𝛽)/4𝐵(𝛼+𝛽)/2𝐴−(𝛼+𝛽)/4 ≤ IdH

or equivalently 𝐵(𝛼+𝛽)/2 ≤ 𝐴(𝛼+𝛽)/2, as wanted.
Now 𝐴0 ≥ 𝐵0, and 𝐴1 ≥ 𝐵1 by assumption. Hence 𝐴1/2 ≥ 𝐵1/2 by what we just

showed. But then also 𝐴1/4 ≥ 𝐵1/4, and 𝐴3/4 ≥ 𝐵3/4. Continuing this process shows
that

𝐴𝑑 ≥ 𝐵𝑑

for every 𝑑 ∈ ℤ[ 1
2] ∩ [0, 1].

We explain why this implies the result for all 𝑡 ∈ [0, 1]. Consider 𝑋 ··= {(𝑆,𝑇) ∈
B(H) × B(H) : 𝑆 ≥ 𝑇}. Since the map

𝜓 : B(H) × B(H) −→ B(H)
(𝐴, 𝐵) ↦−→ 𝐴 − 𝐵

is continuous and since B(H)+ is norm-closed(13) in B(H), 𝑋 is closed in B(H)×B(H),
as 𝑋 = 𝜓−1(B(H)+). Let furthermore

𝜑𝐴,𝐵 : [0, 1] −→ B(H) × B(H)
𝑡 ↦−→ (𝐴𝑡, 𝐵𝑡).

(13)Indeed, if (𝐴𝑛)𝑛∈ℕ ⊂ B(H)+ converges in norm to 𝐴 ∈ B(H), then (𝐴𝑛)𝑛∈ℕ converges also weakly
to 𝐴, and thus

⟨𝐴𝑢, 𝑢⟩ = lim
𝑛→∞

⟨𝐴𝑛𝑢, 𝑢⟩

for any 𝑢 ∈ H . As ⟨𝐴𝑛𝑢, 𝑢⟩ ≥ 0 for any 𝑢 ∈ H and 𝑛 ∈ ℕ, we deduce that ⟨𝐴𝑢, 𝑢⟩ ≥ 0 for any 𝑢 ∈ H .
Hence 𝐴 ∈ B(H)+.
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The map 𝜑𝐴,𝐵 is continuous by Proposition A.40, as if 𝜋1,𝜋2 denote the natural projec-
tions on each factor of the product B(H)×B(H), the two composite 𝜋1◦𝜑𝐴,𝐵, 𝜋2◦𝜑𝐴,𝐵
are continuous by Lemma 2.13.

With these notations, our goal is to prove that

𝜑𝐴,𝐵( [0, 1]) ⊂ 𝑋.

Let then 𝑡 ∈ [0, 1], and choose a sequence (𝑑𝑛)𝑛∈ℕ ⊂ ℤ[ 1
2] ∩ [0, 1] so that 𝑑𝑛 → 𝑡 as

𝑛→ ∞, which is possible by the density of ℤ[ 1
2] ∩ [0, 1] in [0, 1]. Henceforth, one has

𝜑𝐴,𝐵(𝑡) = 𝜑𝐴,𝐵( lim
𝑛→∞

𝑑𝑛) = lim
𝑛→∞

𝜑𝐴,𝐵(𝑑𝑛)

by continuity of 𝜑𝐴,𝐵. By what we proved above, 𝐴𝑑𝑛 ≥ 𝐵𝑑𝑛 for any 𝑛 ∈ ℕ, i.e.
𝜑𝐴,𝐵(𝑑𝑛) ∈ 𝑋 for any 𝑛 ∈ ℕ. Hence, 𝜑𝐴,𝐵(𝑡) is the limit of a sequence of elements of 𝑋 ,
and since 𝑋 is closed in B(H)×B(H), we deduce 𝜑𝐴,𝐵(𝑡) ∈ 𝑋 . Thus 𝜑𝐴,𝐵( [0, 1]) ⊂ 𝑋 ,
and this concludes the proof in the case where 𝐴 and 𝐵 are both invertible.

If now 𝐴 ≥ 𝐵 ≥ 0, without any assumption of invertibility, then

𝐴 + 𝜀IdH ≥ 𝐵 + 𝜀IdH ≥ 𝜀IdH

for all 𝜀 > 0, invoking Proposition 2.11(ii). Corollary 1.23 now implies that 𝐴 + 𝜀IdH ,
𝐵 + 𝜀IdH are both invertible, so we may apply the first part of the proof to deduce

(𝐴 + 𝜀IdH )𝑡 ≥ (𝐵 + 𝜀IdH )𝑡

for any 𝑡 ∈ [0, 1]. Letting 𝜀 → 0 yields 𝐴𝑡 ≥ 𝐵𝑡 for any 𝑡 ∈ [0, 1] and finishes the
proof. □

Remark 2.15. In general, Löwner-Heinz inequality is not true for 𝑡 > 1. Consider for
instance the two bounded operators on H = ℂ2 given by

𝐴 =

(
2 1
1 1

)
, 𝐵 =

(
1 0
0 0

)
.

The operator 𝐴−𝐵 =

(
1 1
1 1

)
is positive, as seen in Remark 2.12, and 𝐵 is also positive,

but
𝐴2 − 𝐵2 =

(
5 3
3 2

)
−
(
1 0
0 0

)
=

(
4 3
3 2

)
and one of the eigenvalues of this matrix is 3 −

√
10 < 0, so 𝐴2 ≥ 𝐵2 does not hold.
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2.4 Further operator inequalities

In this part, we derive several consequences of the Löwner-Heinz inequality.
For 𝐴, 𝐵 ∈ P(H), we will write 𝐴Δ𝑡𝐵 as a shorthand for the operator

𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡𝐴1/2.

Observe that 𝐴Δ𝑡𝐵 is exactly the image of 𝑡 ∈ [0, 1] under the map 𝜎(𝐴, 𝐵, ·), the
geodesic we have built between 𝐴 and 𝐵, in Lemma 2.8. Note also that with this
notation, one has 𝐴Δ𝑡𝐵−1 = (𝐴−1Δ𝑡𝐵)−1 for all 𝑡 ∈ [0, 1]. Indeed

𝐴Δ𝑡𝐵
−1 = 𝐴1/2 (𝐴−1/2𝐵−1𝐴−1/2) 𝑡𝐴1/2

= 𝐴1/2 (𝐴1/2𝐵𝐴1/2)−𝑡𝐴1/2

=
(
𝐴−1/2 (𝐴1/2𝐵𝐴1/2) 𝑡𝐴−1/2)−1

= (𝐴−1Δ𝑡𝐵)−1.

In particular, (𝐴Δ𝑡𝐵)−1 = 𝐴−1Δ𝑡𝐵−1 for all 𝑡 ∈ [0, 1].
We now turn to the proof of what is called the Jensen’s inequality for operators. In

this view, we will make use of the next useful lemma.

Lemma 2.16. Let 𝐴 ∈ P(H) and 𝑋 ∈ Aut(H). Then

(𝑋∗𝐴𝑋)𝑡 = 𝑋∗𝐴1/2 (𝐴1/2𝑋𝑋∗𝐴1/2) 𝑡−1
𝐴1/2𝑋

for all 𝑡 ∈ ℝ. In particular, 𝐴Δ𝑡𝐵 = 𝐵Δ1−𝑡𝐴 for any 𝑡 ∈ [0, 1] and 𝐴, 𝐵 ∈ P(H).

Proof. As 𝑋 and 𝐴1/2 are both invertible, so is their product, and we can then con-
sider 𝐴1/2𝑋 = 𝑃𝑈 the polar decomposition of 𝐴1/2𝑋 , with 𝑃 positive and 𝑈 unitary,
according to Theorem 1.46. We have the identities

𝑋∗𝐴1/2 = (𝐴1/2𝑋)∗ = (𝑃𝑈)∗ = 𝑈∗𝑃, 𝐴1/2𝑋𝑋∗𝐴1/2 = 𝑃𝑈𝑈∗𝑃 = 𝑃2

so for all 𝑡 ∈ ℝ, we get

(𝑋∗𝐴𝑋)1+𝑡 = (𝑋∗𝐴1/2𝐴1/2𝑋)1+𝑡

= (𝑈∗𝑃𝑃𝑈)1+𝑡

= 𝑈∗𝑃2(1+𝑡)𝑈

= 𝑈∗𝑃𝑃2𝑡𝑃𝑈

= 𝑋∗𝐴1/2 (𝐴1/2𝑋𝑋∗𝐴1/2) 𝑡𝐴1/2𝑋

using Remark 1.31 for the third equality, because 𝑈∗ = 𝑈−1. This proves the first
statement, and in particular

(𝑋∗)−1(𝑋∗𝐴𝑋)𝑡𝑋−1 = 𝐴1/2 (𝐴1/2𝑋𝑋∗𝐴1/2) 𝑡−1
𝐴1/2
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for any 𝐴 ∈ P(H) and 𝑋 ∈ Aut(H).
Now, let 𝐴, 𝐵 ∈ P(H), 𝑡 ∈ [0, 1]. Applying the last equality with 𝑋 = 𝐴−1/2, it

follows that

𝐵Δ1−𝑡𝐴 = 𝐵1/2 (𝐵−1/2𝐴𝐵−1/2)1−𝑡
𝐵1/2

= 𝐵1/2 (𝐵1/2𝐴−1𝐵1/2) 𝑡−1
𝐵1/2

= 𝐵1/2 (𝐵1/2𝐴−1/2𝐴−1/2𝐵1/2) 𝑡−1
𝐵1/2

= (𝐴−1/2)−1 (𝐴−1/2𝐵𝐴−1/2) 𝑡 (𝐴−1/2)−1

= 𝐴Δ𝑡𝐵.

This finishes our proof. □

An operator 𝑋 ∈ B(H) is called a contraction if ∥𝑋 ∥ ≤ 1. Jensen’s inequality
states then the following.

Theorem 2.17. Let 𝐴 ∈ P(H) and 𝑋 ∈ Aut(H) be a contraction. Then

𝑋∗𝐴𝑡𝑋 ≤ (𝑋∗𝐴𝑋)𝑡

for any 𝑡 ∈ [0, 1].

Proof. Since ∥𝑋 ∥ ≤ 1, ∥𝑋𝑋∗∥ = ∥𝑋 ∥2 ≤ 1 as well, thus 𝑋𝑋∗ ≤ IdH , by Proposition
2.11(iv), that we may apply since 𝑋𝑋∗ is positive. Moreover, as 𝑋 is invertible so is
𝑋𝑋∗, and (v) of Proposition 2.11 now gives

IdH ≤ (𝑋𝑋∗)−1 = (𝑋∗)−1𝑋−1.

Using observation (4), right after Remark 2.12, we may act on both sides of this in-
equality with 𝐴−1/2 to get

𝐴−1 = 𝐴−1/2IdH𝐴
−1/2 ≤ 𝐴−1/2(𝑋∗)−1𝑋−1𝐴−1/2

and by the Löwner-Heinz inequality, one has then

(𝐴−1)1−𝑡 ≤
(
𝐴−1/2(𝑋∗)−1𝑋−1𝐴−1/2)1−𝑡 (5)

for all 𝑡 ∈ [0, 1]. This implies that

(𝑋∗𝐴𝑋)𝑡 = 𝑋∗𝐴1/2 (𝐴1/2𝑋𝑋∗𝐴1/2) 𝑡−1
𝐴1/2𝑋

= 𝑋∗𝐴1/2 (𝐴−1/2(𝑋∗)−1𝑋−1𝐴−1/2)1−𝑡
𝐴1/2𝑋

≥ 𝑋∗𝐴1/2(𝐴−1)1−𝑡𝐴1/2𝑋

= 𝑋∗𝐴𝑡𝑋

using Lemma 2.16 for the first equality, and again (4) combined with (5) to get the
lower bound. Thus we are done. □
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This inequality has also an analog for operators that are not contractions. The
price to pay is a multiplicative factor.

Corollary 2.18. Let 𝐴 ∈ P(H) and 𝑋 ∈ Aut(H). Then

𝑋∗𝐴𝑡𝑋 ≤ ∥𝑋 ∥2−2𝑡 (𝑋∗𝐴𝑋)𝑡

for any 𝑡 ∈ [0, 1].

Proof. It suffices to apply Theorem 2.17 with 𝐴 ∈ P(H) and 𝑋 ′ ··= 𝑋
∥𝑋 ∥ , which is an

invertible contraction. Re-arranging the obtained inequality with Proposition 2.11(iii)
gives the conclusion. □

With this reformulation of Jensen’s inequality in our hands, we establish two ad-
ditional operator inequalities.

Lemma 2.19. Let 𝐴, 𝐵,𝐶, 𝐷 ∈ P(H). The following inequalities hold.

(i) 𝐴Δ𝑡𝐵 ≤ ∥𝐴1/2𝐶1/2∥2−2𝑡 (𝐶−1Δ𝑡𝐵) for any 𝑡 ∈ [0, 1].

(ii) 𝐶Δ𝑡𝐷 ≤ ∥𝐵1/2𝐷1/2∥2𝑡 (𝐶Δ𝑡𝐵−1) for any 𝑡 ∈ [0, 1].

Proof. (i) By Corollary 2.18 with 𝑋 = 𝐴1/2𝐶1/2, we have

𝐶1/2𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡𝐴1/2𝐶1/2 ≤ ∥𝐴1/2𝐶1/2∥2−2𝑡 (𝐶1/2𝐴1/2(𝐴−1/2𝐵𝐴−1/2)𝐴1/2𝐶1/2) 𝑡
= ∥𝐴1/2𝐶1/2∥2−2𝑡 (𝐶1/2𝐵𝐶1/2) 𝑡

for all 𝑡 ∈ [0, 1], whence

𝐴Δ𝑡𝐵 = 𝐶−1/2𝐶1/2𝐴1/2 (𝐴−1/2𝐵𝐴−1/2) 𝑡𝐴1/2𝐶1/2𝐶−1/2

≤ ∥𝐴1/2𝐶1/2∥2−2𝑡𝐶−1/2 (𝐶1/2𝐵𝐶1/2) 𝑡𝐶−1/2

= ∥𝐴1/2𝐶1/2∥2−2𝑡 (𝐶−1Δ𝑡𝐵)

for any 𝑡 ∈ [0, 1], using (4) once again to get the inequality. This establishes (i).
(ii) For all 𝑡 ∈ [0, 1], one computes that

𝐶Δ𝑡𝐷 = 𝐷Δ1−𝑡𝐶

≤ ∥𝐵1/2𝐷1/2∥2−2(1−𝑡) (𝐵−1Δ1−𝑡𝐶)
= ∥𝐵1/2𝐷1/2∥2𝑡 (𝐶Δ𝑡𝐵−1)

using the second part of Lemma 2.16 for the first and third equality, and point (i) of
the present lemma for the second inequality. The proof is complete. □
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Here is the central operator inequality we will need to prove convexity of the dis-
tance between geodesics.

Theorem 2.20. Let 𝐴, 𝐵,𝐶, 𝐷 ∈ P(H). Then(𝐴Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷)1/2 ≤ 𝐴1/2𝐶1/21−𝑡𝐵1/2𝐷1/2𝑡
for all 𝑡 ∈ [0, 1].

This result is usually known as the Corach-Porta-Recht inequality, from the au-
thors’ names of [7], who have studied in details the space P(H) with tools from differ-
ential geometry in a series of papers in the 90’s [7, 8, 9].

Proof. Fix 𝑡 ∈ [0, 1], and 𝐴, 𝐵,𝐶, 𝐷 ∈ P(H). One computes that(𝐴Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷)1/22

=
(𝐶Δ𝑡𝐷)1/2(𝐴Δ𝑡𝐵) (𝐶Δ𝑡𝐷)1/2

≤
𝐴1/2𝐶1/22−2𝑡(𝐶Δ𝑡𝐷)1/2(𝐶−1Δ𝑡𝐵) (𝐶Δ𝑡𝐷)1/2

=
𝐴1/2𝐶1/22−2𝑡(𝐶−1Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷) (𝐶−1Δ𝑡𝐵)1/2

≤
𝐴1/2𝐶1/22−2𝑡𝐵1/2𝐷1/22𝑡(𝐶−1Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐵−1) (𝐶−1Δ𝑡𝐵)1/2

=
𝐴1/2𝐶1/22−2𝑡𝐵1/2𝐷1/22𝑡(𝐶−1Δ𝑡𝐵)1/2(𝐶−1Δ𝑡𝐵)−1(𝐶−1Δ𝑡𝐵)1/2

=
𝐴1/2𝐶1/22−2𝑡𝐵1/2𝐷1/22𝑡

.

Above, the first equality is the 𝐶∗−identity (Proposition 1.5(iv)). The two inequalities
follow from Lemma 2.19, coupled with the fact that ∥𝐶𝐴𝐶∗∥ ≤ ∥𝐶𝐵𝐶∗∥ if 𝐴 ≤ 𝐵 and
𝐶 ∈ Aut(H) (as observed right after Remark 2.12 as well). The third equality is a
consequence of 𝐶Δ𝑡𝐵−1 = (𝐶−1Δ𝑡𝐵)−1, as noted above. It remains to justify the second
equality. This is done with Corollary 1.25(ii), that we may apply since

(𝐶Δ𝑡𝐷)1/2(𝐶−1Δ𝑡𝐵) (𝐶Δ𝑡𝐷)1/2 and (𝐶−1Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷) (𝐶−1Δ𝑡𝐵)1/2

are positive, and Proposition 1.17:(𝐶Δ𝑡𝐷)1/2(𝐶−1Δ𝑡𝐵) (𝐶Δ𝑡𝐷)1/2 = 𝑟 ((𝐶Δ𝑡𝐷)1/2(𝐶−1Δ𝑡𝐵) (𝐶Δ𝑡𝐷)1/2)
= 𝑟

(
(𝐶Δ𝑡𝐷)1/2(𝐶−1Δ𝑡𝐵)1/2(𝐶−1Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷)1/2)

= 𝑟
(
(𝐶−1Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷) (𝐶−1Δ𝑡𝐵)1/2)

=
(𝐶−1Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷) (𝐶−1Δ𝑡𝐵)1/2.

Henceforth, taking the square root in the estimate(𝐴Δ𝑡𝐵)1/2(𝐶Δ𝑡𝐷)1/22 ≤
𝐴1/2𝐶1/22−2𝑡𝐵1/2𝐷1/22𝑡

yields the announced inequality. This finishes our proof. □
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We deduce from this theorem the Cordes inequality, from the author’s name of [10].

Corollary 2.21. Let 𝐵, 𝐷 ∈ P(H). Then ∥𝐵𝑡𝐷𝑡∥ ≤ ∥𝐵𝐷∥𝑡 for all 𝑡 ∈ [0, 1].

Proof. Fix 𝐵, 𝐷 ∈ P(H) and apply Theorem 2.20 with 𝐴 = 𝐶 = IdH and 𝐵2, 𝐷2 to get
the conclusion. □

Thus, we showed that the Cordes inequality is a consequence of the Löwner-Heinz
inequality. It turns out the two inequalities are equivalent, and much more: they are
both equivalent to Jensen’s inequality, to Corach-Recht-Porta inequality, or to others a
priori weaker inequalities. The proof of Theorem 2.14 for instance shows that 𝐴𝑡 ≥ 𝐵𝑡
for all 𝑡 ∈ [0, 1] if and only if 𝐴1/2 ≥ 𝐵1/2, when 𝐴 ≥ 𝐵 ≥ 0. See [10, 18, 19] for more
background on these results.

2.5 Convexity of the distance between geodesics

The next proposition is already proving the convexity inequality in a particular
case. We will explain below how this particular case allows to handle the general one.

Proposition 2.22. Let 𝐴, 𝐵 ∈ P(H). Then

d(𝐴𝑡, 𝐵𝑡) ≤ 𝑡d(𝐴, 𝐵)

for all 𝑡 ∈ [0, 1].

Proof. Let 𝐴, 𝐵 ∈ P(H). We distinguish two cases:

(i) ∥𝐴1/2𝐵−1𝐴1/2∥ ≤ ∥𝐴−1/2𝐵𝐴−1/2∥,

(ii) ∥𝐴−1/2𝐵𝐴−1/2∥ ≤ ∥𝐴1/2𝐵−1𝐴1/2∥.

(i) Let us first assume that ∥𝐴1/2𝐵−1𝐴1/2∥ ≤ ∥𝐴−1/2𝐵𝐴−1/2∥, and fix 𝑡 ∈ [0, 1]. As
ln : (0,∞) −→ ℝ is increasing and 𝑡 ≥ 0, we have also

𝑡 ln(∥𝐴1/2𝐵−1𝐴1/2∥) ≤ 𝑡 ln(∥𝐴−1/2𝐵𝐴−1/2∥). (6)

Now, observe that

ln(∥𝐴−𝑡/2𝐵𝑡𝐴−𝑡/2∥) = ln(∥𝐴−𝑡/2𝐵𝑡/2𝐵𝑡/2𝐴−𝑡/2∥)
= ln

(
∥𝐴−𝑡/2𝐵𝑡/2∥2)

≤ ln
(
(∥𝐴−1/2𝐵1/2∥2)𝑡

)
= 𝑡 ln(∥𝐴−1/2𝐵1/2∥2)
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= 𝑡 ln(∥𝐴−1/2𝐵𝐴−1/2∥)

using the𝐶∗−identity for the second and the fifth equality. The inequality follows from
Corollary 2.21 and the fact that ln is increasing on (0,∞). Exactly in the same way,
we have the inequality

ln(∥𝐴𝑡/2𝐵−𝑡𝐴𝑡/2∥) ≤ 𝑡 ln(∥𝐴1/2𝐵−1𝐴1/2∥). (7)

To conclude, we invoke Lemma 2.5 and write explicitly

d(𝐴𝑡, 𝐵𝑡) = ∥ ln(𝐴−𝑡/2𝐵𝑡𝐴−𝑡/2)∥ = max(ln(∥𝐴−𝑡/2𝐵𝑡𝐴−𝑡/2∥), ln(∥𝐴𝑡/2𝐵−𝑡𝐴𝑡/2∥)).

Inside the maximum, the first quantity is bounded from above by 𝑡 ln(∥𝐴−1/2𝐵𝐴−1/2∥),
and combining (6) and (7), so is the second quantity. Hence

d(𝐴𝑡, 𝐵𝑡) = max(ln(∥𝐴−𝑡/2𝐵𝑡𝐴−𝑡/2∥), ln(∥𝐴𝑡/2𝐵−𝑡𝐴𝑡/2∥))
≤ 𝑡 ln(∥𝐴−1/2𝐵𝐴−1/2∥)
= 𝑡max(ln(∥𝐴−1/2𝐵𝐴−1/2∥), ln(∥𝐴1/2𝐵−1𝐴1/2∥))
= 𝑡∥ ln(𝐴−1/2𝐵𝐴−1/2)∥
= 𝑡d(𝐴, 𝐵).

where the second equality follows from ∥𝐴1/2𝐵−1𝐴1/2∥ ≤ ∥𝐴−1/2𝐵𝐴−1/2∥. This proves
the proposition in the case (i).

(ii) Assume now that ∥𝐴−1/2𝐵𝐴−1/2∥ ≤ ∥𝐴1/2𝐵−1𝐴1/2∥, and let 𝑡 ∈ [0, 1]. This
time, we have the opposite of (6):

𝑡 ln(∥𝐴−1/2𝐵𝐴−1/2∥) ≤ 𝑡 ln(∥𝐴1/2𝐵−1𝐴1/2∥).

Hence, when writing

d(𝐴𝑡, 𝐵𝑡) = max(ln(∥𝐴−𝑡/2𝐵𝑡𝐴−𝑡/2∥), ln(∥𝐴𝑡/2𝐵−𝑡𝐴𝑡/2∥))

this is now 𝑡 ln(∥𝐴1/2𝐵−1𝐴1/2∥) that bounds simultaneously from above both quanti-
ties inside the maximum, whence

d(𝐴𝑡, 𝐵𝑡) ≤ 𝑡 ln(∥𝐴1/2𝐵−1𝐴1/2∥) = 𝑡d(𝐴, 𝐵).

This establishes the result in case (ii), and we are done. □

We thus see that the inequality

∥ ln(𝐴−𝑡/2𝐵𝐴−𝑡/2)∥ ≤ 𝑡∥ ln(𝐴−1/2𝐵𝐴−1/2)∥, 𝑡 ∈ [0, 1], 𝐴, 𝐵 ∈ P(H)

is a consequence of the Cordes inequality. As showed in [1, theorem 1], the converse
holds as well, enlarging our list of equivalent operator inequalities.

We can now prove the convexity of the distance between two geodesics in P(H).

78



Master thesis 2.5 Convexity of the distance between geodesics

Theorem 2.23. Let 𝐴, 𝐵,𝐶, 𝐷 ∈ P(H). Then

d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)) ≤ (1 − 𝑡)d(𝐴,𝐶) + 𝑡d(𝐵, 𝐷)

for all 𝑡 ∈ [0, 1].

Proof. We start by showing the result in two particular cases: (i) if 𝐴 = 𝐶 and (ii) if
𝐵 = 𝐷, and we will explain below why it implies the general case.

(i) Suppose that 𝐴 = 𝐶. Since the action Aut(H) ↷ P(H) is transitive (Lemma
2.3), preserves the metric d (Proposition 2.6) and the geodesics (Lemma 2.8), we may
assume that in fact 𝐴 = 𝐶 = IdH . In this case d(𝐴,𝐶) = d(𝐴, 𝐴) = 0, and the geodesics
between 𝐴 and 𝐵 and𝐶 and 𝐷 are 𝜎(IdH , 𝐵, 𝑡) = 𝐵𝑡, 𝜎(IdH , 𝐷, 𝑡) = 𝐷𝑡 for all 𝑡 ∈ [0, 1].
Thus we are left to prove that

d(𝐵𝑡, 𝐷𝑡) ≤ 𝑡d(𝐵, 𝐷)
for all 𝑡 ∈ [0, 1]. This is the content of Proposition 2.22, so (i) is settled.

(ii) Now suppose that 𝐵 = 𝐷. The inequality to show reduces to

d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)) ≤ (1 − 𝑡)d(𝐴,𝐶).
for all 𝑡 ∈ [0, 1]. By Lemma 2.16, 𝜎(𝐴, 𝐵, 𝑡) = 𝜎(𝐵, 𝐴, 1− 𝑡), 𝜎(𝐶, 𝐵, 𝑡) = 𝜎(𝐵,𝐶, 1− 𝑡)
for all 𝑡 ∈ [0, 1], and these two geodesics have the same starting point, so it follows
from case (i) that

d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐵, 𝑡)) = d(𝜎(𝐵, 𝐴, 1 − 𝑡),𝜎(𝐵,𝐶, 1 − 𝑡)) ≤ (1 − 𝑡)d(𝐴,𝐶)
for all 𝑡 ∈ [0, 1], as desired. This proves the theorem in case (ii).

We now turn to the general case. Let 𝐴, 𝐵,𝐶, 𝐷 ∈ P(H) and 𝑡 ∈ [0, 1]. We consider
𝜎(𝐶, 𝐵, 𝑡) the geodesic between 𝐶 and 𝐵 (see Figure 2 below), and by the triangle
inequality we estimate

d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)) ≤ d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐵, 𝑡)) + d(𝜎(𝐶, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)).
In the right-hand side, the first term is the distance between two geodesics that end
at the same point, so we may apply case (ii) above to get

d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐵, 𝑡)) ≤ (1 − 𝑡)d(𝐴,𝐶).
In the same way, 𝜎(𝐶, 𝐵, ·) and 𝜎(𝐶, 𝐷, ·) are two geodesics starting at the same point,
so by case (i) it holds

d(𝜎(𝐶, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)) ≤ 𝑡d(𝐵, 𝐷).
Putting these three estimates together, we conclude that

d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡)) ≤ d(𝜎(𝐴, 𝐵, 𝑡),𝜎(𝐶, 𝐵, 𝑡)) + d(𝜎(𝐶, 𝐵, 𝑡),𝜎(𝐶, 𝐷, 𝑡))
≤ (1 − 𝑡)d(𝐴,𝐶) + 𝑡d(𝐵, 𝐷)

as announced. This finishes the proof of the theorem. □
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𝐴

𝐵

𝐶

𝐷

Figure 2: The idea in the proof of Theorem 2.23

Our proof of Theorem 2.23 is different from the one in [9], as it does not rely on
differential geometry, and of the one in [1], as in this paper we were unable to explain
one of the authors’ argument.

From the convexity inequality, we derive the next corollary.

Corollary 2.24. Metric balls in (P(H), d) are metrically convex.

Proof. Let 𝐴 ∈ P(H), and 𝜀 > 0. Suppose that 𝐵,𝐶 ∈ 𝐵d(𝐴, 𝜀). Let 𝑡 ∈ [0, 1]. By the
triangle inequality we have

d(𝜎(𝐵,𝐶, 𝑡), 𝐴) ≤ d(𝜎(𝐵,𝐶, 𝑡),𝜎(𝐵, 𝐴, 𝑡)) + d(𝜎(𝐵, 𝐴, 𝑡), 𝐴).

Using Theorem 2.23, we get

d(𝜎(𝐵,𝐶, 𝑡),𝜎(𝐵, 𝐴, 𝑡)) ≤ (1 − 𝑡)d(𝐵, 𝐵) + 𝑡d(𝐶, 𝐴) = 𝑡d(𝐶, 𝐴) < 𝑡𝜀

for the first term, whereas

d(𝜎(𝐵, 𝐴, 𝑡), 𝐴) = d(𝜎(𝐵, 𝐴, 𝑡),𝜎(𝐵, 𝐴, 1)) = (1 − 𝑡)d(𝐵, 𝐴) < (1 − 𝑡)𝜀

using that 𝜎(𝐵, 𝐴, ·) is a geodesic and that 𝐵 ∈ 𝐵d(𝐴, 𝜀). Putting these upper bounds
into the first inequality, it follows that

d(𝜎(𝐵,𝐶, 𝑡), 𝐴) < 𝑡𝜀 + (1 − 𝑡)𝜀 = 𝜀

whence 𝜎(𝐵,𝐶, 𝑡) ∈ 𝐵d(𝐴, 𝜀) for all 𝑡 ∈ [0, 1]. This completes the proof. □
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3. Unitarisability

In this part, we introduce unitarisability for groups. We show that finite and
amenable groups are unitarisable, and that non-abelian free groups are not unitaris-
able. We investigate properties of induced actions of the group on the cone P(H). We
prove Pisier’s theorem, and we obtain a geometric formulation of amenability for a
group.

As from the beginning, we fix H a complex separable Hilbert space.

3.1 The class of unitarisable groups

Let us first introduce representations of groups on Hilbert spaces.

Definition 3.1. Let 𝐺 be a group.
A representation of 𝐺 on H is a group morphism

𝜋 : 𝐺 −→ Aut(H).

Equivalently, as observed right after Definition 2.2, a representation 𝜋 of 𝐺 on a
Hilbert space H is a group action 𝐺↷ H .

The representation 𝜋 is called unitary if 𝜋(𝑔) ∈ U(H) for all 𝑔 ∈ 𝐺. It is called
unitarisable if there exists 𝑆 ∈ Aut(H) so that 𝑆−1𝜋(𝑔)𝑆 is unitary for all 𝑔 ∈ 𝐺, and
in this case 𝑆 is called a unitariser for 𝜋. The set of unitarisers for 𝜋 is denoted𝑈 (𝜋).

Lastly, 𝜋 is said to be uniformly bounded if there exists a constant 𝐶 > 0 so that
∥𝜋(𝑔)∥ ≤ 𝐶, for all 𝑔 ∈ 𝐺. In this case, the smallest possible bound is denoted |𝜋 | and
is called the size of the representation 𝜋. In fact

|𝜋 | = sup
𝑔∈𝐺

∥𝜋(𝑔)∥.

Example 3.2. (i) Any group 𝐺 has a trivial representation, given by

𝜋 : 𝐺 −→ Aut(ℂ) = ℂ∗

𝑔 ↦−→ 1.

It is obviously a unitary, unitarisable and uniformly bounded representation, with size
|𝜋 | = 1.
(ii) If 𝐺 is a subgroup of GL𝑛(ℂ) = Aut(ℂ𝑛), 𝑛 ≥ 1, the natural injection 𝐺 ↩→ GL𝑛(ℂ)
is a representation of 𝐺.
(iii) Let 𝐺 be a group, and H = ℓ 2(𝐺). The regular representation of 𝐺 is defined as

𝜆𝐺 : 𝐺 −→ Aut(ℓ 2(𝐺))
𝑔 ↦−→ 𝜆𝐺 (𝑔)
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where (𝜆𝐺 (𝑔) ( 𝑓 )) (𝑥) ··= 𝑓 (𝑔−1𝑥), 𝑓 ∈ ℓ 2(𝐺), 𝑥 ∈ 𝐺. This is not hard to check that 𝜆𝐺 is
well-defined. To see it is a representation, we fix 𝑔, ℎ ∈ 𝐺, 𝑓 ∈ ℓ 2(𝐺), and we compute

(𝜆𝐺 (𝑔ℎ) ( 𝑓 )) (𝑥) = 𝑓 ((𝑔ℎ)−1𝑥)
= 𝑓 (ℎ−1𝑔−1𝑥)
= (𝜆𝐺 (ℎ) ( 𝑓 )) (𝑔−1𝑥)
= 𝜆𝐺 (𝑔) (𝜆𝐺 (ℎ) ( 𝑓 )) (𝑥)

for all 𝑥 ∈ 𝐺, whence 𝜆𝐺 (𝑔ℎ) ( 𝑓 ) = 𝜆𝐺 (𝑔)𝜆𝐺 (ℎ) ( 𝑓 ), and this holds for all 𝑓 ∈ ℓ 2(𝐺).
Thus 𝜆𝐺 (𝑔ℎ) = 𝜆𝐺 (𝑔)𝜆𝐺 (ℎ) for all 𝑔, ℎ ∈ 𝐺, proving that 𝜆𝐺 is a representation of 𝐺.
Furthermore, if 𝑔 ∈ 𝐺 and 𝑓 ∈ ℓ 2(𝐺), one has

∥𝜆𝐺 (𝑔) ( 𝑓 )∥2
2 =

∑︁
𝑥∈𝐺

|𝜆𝐺 (𝑔) ( 𝑓 ) (𝑥) |2 =
∑︁
𝑥∈𝐺

| 𝑓 (𝑔−1𝑥) |2 =
∑︁
ℎ∈𝐺

| 𝑓 (ℎ) |2 = ∥ 𝑓 ∥2
2

whence ∥𝜆𝐺 (𝑔) ( 𝑓 )∥2 = ∥ 𝑓 ∥2. Thus 𝜆𝐺 (𝑔) is an isometry for any 𝑔 ∈ 𝐺. In particular,
𝜆𝐺 (𝑔)∗𝜆𝐺 (𝑔) = IdH by Proposition 1.9(iv), and since 𝜆𝐺 (𝑔) is invertible, this last con-
dition implies that 𝜆𝐺 (𝑔) is unitary, for any 𝑔 ∈ 𝐺. Hence 𝜆𝐺 is unitary, in particular
unitarisable and uniformly bounded.

(iv) If 𝜋 and 𝜏 are two representations of 𝐺 on H , their direct sum 𝜋 ⊕ 𝜏 is the repre-
sentation of 𝐺 on H ⊕ H defined by

(𝜋 ⊕ 𝜏) (𝑔) ··=
(
𝜋(𝑔) 0

0 𝜏(𝑔)

)
, 𝑔 ∈ 𝐺.

Concretely, for 𝑔 ∈ 𝐺, (𝜋 ⊕ 𝜏) (𝑔) is the linear operator on H ⊕ H defined as

(𝜋 ⊕ 𝜏) (𝑔) (𝑢, 𝑣) ··= (𝜋(𝑔)𝑢, 𝜏(𝑔)𝑣), 𝑢, 𝑣 ∈ H .

As 𝜋(𝑔) and 𝜏(𝑔) are both bounded, (𝜋 ⊕ 𝜏) (𝑔) is also bounded(14), and since they are
both invertible, so is (𝜋 ⊕ 𝜏) (𝑔), hence 𝜋 ⊕ 𝜏 : 𝐺 −→ Aut(H ⊕ H) is well-defined.
Lastly, as 𝜋 and 𝜏 are group morphisms, we can compute

(𝜋 ⊕ 𝜏) (𝑔ℎ) =
(
𝜋(𝑔ℎ) 0

0 𝜏(𝑔ℎ)

)
=

(
𝜋(𝑔) 0

0 𝜏(𝑔)

) (
𝜋(ℎ) 0

0 𝜏(ℎ)

)
= (𝜋 ⊕ 𝜏) (𝑔) (𝜋 ⊕ 𝜏) (ℎ)

for all 𝑔, ℎ ∈ 𝐺, whence 𝜋 ⊕ 𝜏 is indeed a representation of 𝐺. More generally, if
{𝜋𝑛 : 𝐺 −→ H𝑛 : 𝑛 ∈ ℕ} is a family of representations of 𝐺, their direct sum is a
representation of 𝐺 on

⊕
𝑛∈ℕ

H𝑛, usually denoted
⊕
𝑛∈ℕ

𝜋𝑛, defined by

(⊕
𝑛∈ℕ

𝜋𝑛
)
(𝑔) (𝑢𝑛)𝑛∈ℕ ··= (𝜋𝑛(𝑔)𝑢𝑛)𝑛∈ℕ

for all 𝑔 ∈ 𝐺 and (𝑢𝑛)𝑛∈ℕ ∈
⊕
𝑛∈ℕ

H𝑛.

(14)as proved in the beginning of Chapter 1.
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One has probably recognized in the regular representation of a group 𝐺 the group
homomorphism corresponding to the natural action of 𝐺 on ℓ 2(𝐺), which is used to
define amenability via the Reiter property (𝑅2) ([13, section 2.1], [27]). Thus, as dis-
cussed in Appendix B and in [13], a group 𝐺 is amenable if and only if its regular
representation 𝜆𝐺 has (𝑆, 𝜀)−invariant vectors, for any 𝑆 ⊂ 𝐺 finite and 𝜀 > 0.

Here goes a first connection between unitarisability and uniform boundedness.

Proposition 3.3. Let 𝐺 be a group, and let 𝜋 be a representation of 𝐺.
If 𝜋 is unitarisable, then 𝜋 is uniformly bounded.

Proof. By assumption, we find 𝑆 ∈ Aut(H) so that 𝜏(𝑔) ··= 𝑆−1𝜋(𝑔)𝑆 is a unitary
operator on H , for all 𝑔 ∈ 𝐺. Setting 𝐶 ··= max(∥𝑆∥, ∥𝑆−1∥), we get

∥𝜋(𝑔)𝑢∥ = ∥𝑆𝜏(𝑔)𝑆−1𝑢∥ ≤ ∥𝑆∥∥𝜏(𝑔)∥∥𝑆−1∥∥𝑢∥ ≤ 𝐶2∥𝑢∥

for all 𝑢 ∈ H . Thus ∥𝜋(𝑔)∥ ≤ 𝐶2 for any 𝑔 ∈ 𝐺, and 𝜋 is uniformly bounded, as
wished. □

In fact this proof shows that if 𝜋 is unitarisable and 𝑆 ∈ 𝑈 (𝜋), the quantity
∥𝑆∥∥𝑆−1∥ bounds ∥𝜋(𝑔)∥ from above, for all 𝑔 ∈ 𝐺. In particular, |𝜋 | ≤ ∥𝑆∥∥𝑆−1∥.

Definition 3.4. For 𝑆 ∈ Aut(H), we call the real number

𝑠(𝑆) ··= ∥𝑆∥∥𝑆−1∥

the size of the operator 𝑆.

Here are the first basic properties of the size.

Proposition 3.5. If 𝑆 ∈ Aut(H), then

(i) 𝑠(𝑆) ≥ 1.

(ii) 𝑠(𝜆𝑆) = 𝑠(𝑆) for all 𝜆 ∈ ℂ \ {0}.

(iii) 𝑠(𝑆) = 𝑠(𝑆∗).

(iv) 𝑠(𝑆𝑆∗) = 𝑠(𝑆)2 and 𝑠(
√
𝑆𝑆∗) = 𝑠(𝑆).

Proof. As the operator norm is submultiplicative, we have 1 = ∥IdH ∥ = ∥𝑆𝑆−1∥ ≤
∥𝑆∥∥𝑆−1∥ = 𝑠(𝑆). Point (ii) follows from the computation

𝑠(𝜆𝑆) = ∥𝜆𝑆∥∥(𝜆𝑆)−1∥ = |𝜆 |∥𝑆∥|𝜆 |−1∥𝑆−1∥ = 𝑠(𝑆)
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valid for any 𝜆 ∈ ℂ \ {0}. Point (iii) is immediate as ∥𝑆∗∥ = ∥𝑆∥ and (𝑆∗)−1 = (𝑆−1)∗
(Proposition 1.5, Lemma 1.6), and for (iv) we compute

𝑠(𝑆)2 = ∥𝑆∥2∥𝑆−1∥2 = ∥𝑆𝑆∗∥∥(𝑆−1)∗𝑆−1∥ = ∥𝑆𝑆∗∥∥(𝑆𝑆∗)−1∥ = 𝑠(𝑆𝑆∗)

using the 𝐶∗−identity of B(H). Likewise we have

𝑠(
√
𝑆𝑆∗) = ∥

√
𝑆𝑆∗∥∥(

√
𝑆𝑆∗)−1∥

= ∥𝑆𝑆∗∥1/2∥(𝑆𝑆∗)−1∥1/2

= ∥𝑆∥∥(𝑆−1)∗𝑆−1∥1/2

= ∥𝑆∥∥𝑆−1∥
= 𝑠(𝑆)

using Corollary 1.44(iii) for the second equality, and again Proposition 1.5 for the third
and fourth equalities. This finishes the proof. □

In a similar manner, for 𝜋 a unitarisable representation of 𝐺, the set 𝑈 (𝜋) is also
invariant under scaling. Indeed if 𝑆 ∈ 𝑈 (𝜋) and 𝜆 ∈ ℂ \ {0}, then

(𝜆𝑆)−1𝜋(𝑔)𝜆𝑆 = 𝑆−1𝜋(𝑔)𝑆

is unitary for all 𝑔 ∈ 𝐺 since 𝑆 unitarises 𝜋. Thus 𝜆𝑆 ∈ 𝑈 (𝜋).
The converse of Proposition 3.3 is not necessarily true. This motivates the next

terminology.

Definition 3.6. A group 𝐺 is unitarisable if all its uniformly bounded represen-
tations are unitarisable.

An inner product (·, ·)H on a Hilbert space H is called 𝐺−invariant if

(𝜋(𝑔)𝑢,𝜋(𝑔)𝑣)H = (𝑢, 𝑣)H

for any 𝑢, 𝑣 ∈ H and 𝑔 ∈ 𝐺.
Note that the initial inner product ⟨·, ·⟩ is 𝐺−invariant if and only if 𝜋(𝑔) is an

isometry for any 𝑔 ∈ 𝐺, and moreover since 𝜋(𝑔) is invertible, this is equivalent to
say that 𝜋(𝑔) is unitary for all 𝑔 ∈ 𝐺, i.e. 𝜋 is unitary. Hence, as unitarisable rep-
resentations are equivalent to unitary representations, they should give rise to inner
products that are "equivalent" to ⟨·, ·⟩. The next result makes this idea precise. Before
stating and proving it, let us outline an idea of general interest.

Remark 3.7. If 𝑋 and𝑌 are isomorphicℂ−vector spaces, via an isomorphism 𝑓 : 𝑋 −→
𝑌 , and that 𝑋 carries a hermitian inner product ⟨·, ·⟩𝑋 , we can define a hermitian inner
product ⟨·, ·⟩𝑌 on 𝑌 , by the formula

⟨𝑦1, 𝑦2⟩𝑌 ··= ⟨𝑓 −1(𝑦1), 𝑓 −1(𝑦2)⟩𝑋 , 𝑦1, 𝑦2 ∈ 𝑌.
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Indeed, the linearity of 𝑓 −1 and of ⟨·, ·⟩𝑋 in the first variable immediately implies that
⟨·, ·⟩𝑌 is linear in the first variable, and additionally

⟨𝑦2, 𝑦1⟩𝑌 = ⟨𝑓 −1(𝑦2), 𝑓 −1(𝑦1)⟩𝑋
= ⟨𝑓 −1(𝑦1), 𝑓 −1(𝑦2)⟩𝑋
= ⟨𝑦1, 𝑦2⟩𝑌

for any 𝑦1, 𝑦2 ∈ 𝑌 . Also ⟨𝑦, 𝑦⟩𝑌 = ⟨𝑓 −1(𝑦), 𝑓 −1(𝑦)⟩𝑋 ≥ 0 for all 𝑦 ∈ 𝑌 , and ⟨𝑦, 𝑦⟩𝑌 = 0 if
and only if 𝑓 −1(𝑦) = 0, which happens if and only if 𝑦 = 0, as 𝑓 −1 is a linear injection.
Thus ⟨·, ·⟩𝑌 is a hermitian inner product. We will use this observation several times
below.

Lemma 3.8. Let 𝜋 be a representation of 𝐺 on a Hilbert space H . The following
claims are equivalent.

(i) 𝜋 is unitarisable.

(ii) There exists a𝐺−invariant inner product on H inducing the same topology
as ⟨·, ·⟩.

Proof. (i) =⇒ (ii) : Suppose that 𝜋 is unitarisable, and choose a unitariser 𝑆 ∈ Aut(H).
Define a new hermitian inner product (·, ·)H on H by

(𝑢, 𝑣)H ··= ⟨𝑆−1𝑢, 𝑆−1𝑣⟩, 𝑢, 𝑣 ∈ H .

Thanks to Remark 3.7, (·, ·)H is indeed a hermitian inner product. In what follows,
we denote ∥ · ∥ (·,·)H the induced norm, to distinguish it from ∥ · ∥, induced by the initial
inner product ⟨·, ·⟩. First of all, (·, ·)H is 𝐺−invariant. Indeed, let 𝑔 ∈ 𝐺, 𝑢, 𝑣 ∈ H , and
compute that

(𝑢, 𝑣)H = ⟨𝑆−1𝑢, 𝑆−1𝑣⟩
= ⟨𝑆−1𝜋(𝑔)𝑆𝑆−1𝑢, 𝑆−1𝜋(𝑔)𝑆𝑆−1𝑣⟩
= ⟨𝑆−1𝜋(𝑔)𝑢, 𝑆−1𝜋(𝑔)𝑣⟩
= (𝜋(𝑔)𝑢,𝜋(𝑔)𝑣)H

where the second equality follows from the fact that 𝑆−1𝜋(𝑔)𝑆 is unitary for any 𝑔 ∈
𝐺. This proves that (·, ·)H is 𝐺−invariant. It remains to prove it induces the same
topology as ⟨·, ·⟩. Let 𝜀 > 0, and set 𝛿 ··= 𝜀

∥𝑆−1∥ > 0. Then, for any 𝑢 ∈ 𝐵∥·∥ (0, 𝛿), one
has

∥𝑢∥2
(·,·)H = ∥𝑆−1𝑢∥2 ≤ ∥𝑆−1∥2∥𝑢∥2 < ∥𝑆−1∥2𝛿2 = 𝜀2

so ∥𝑢∥ (·,·)H < 𝜀. Hence 𝑢 ∈ 𝐵∥·∥ ( ·,· )H (0, 𝜀), and we have

𝐵∥·∥ (0, 𝛿) ⊂ 𝐵∥·∥ ( ·,· )H (0, 𝜀).
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The other way around, given 𝜀 > 0, set 𝛿 ··= 𝜀
∥𝑆∥ > 0 to get the inclusion

𝐵∥·∥ ( ·,· )H (0, 𝛿) ⊂ 𝐵∥·∥ (0, 𝜀).

This shows that (·, ·)H induces the same topology as ⟨·, ·⟩, and (ii) holds.
(ii) =⇒ (i) : Denote (·, ·)H a 𝐺−invariant inner product on H , inducing the same topol-
ogy as ⟨·, ·⟩. Here again, ∥ · ∥ (·,·)H stands for the norm induced by (·, ·)H . As (H , ⟨·, ·⟩),
(H , (·, ·)H ) are both separable, we can choose 𝐸 ··= {𝑒𝑖 : 𝑖 ∈ 𝐼} and 𝐹 ··= {𝑓 𝑗 : 𝑗 ∈ 𝐽}
orthonormal basis for ⟨·, ·⟩ and for (·, ·)H respectively. These two bases must have the
same cardinality (it is clear if H is finite-dimensional, and if H is infinite-dimensional
we refer to [6, theorem 1.4.16]), and thus we fix a bijection 𝜑 : 𝐼 −→ 𝐽. We use it to
define a map

𝑆 : Vect(𝐸) −→ (H , (·, ·)H )
by 𝑆𝑒𝑖 ··= 𝑓𝜑(𝑖), for any 𝑖 ∈ 𝐼, and we extend 𝑆 linearly to Vect(𝐸). As 𝐸 is an or-
thonormal basis for (H , ⟨·, ·⟩), this subspace is dense in H . Moreover 𝑆 is linear by
construction and H (the target space) is complete. Additionally, if 𝑢 ∈ Vect(𝐸) is

written as 𝑢 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑒𝑖, for some 𝜆1, . . . ,𝜆𝑛 ∈ ℂ, then

∥𝑆𝑢∥ (·,·)H =

 𝑛∑︁
𝑖=1

𝜆𝑖 𝑓𝜑(𝑖)


(·,·)H

=

𝑛∑︁
𝑖=1

|𝜆𝑖 |2 = ∥𝑢∥

using Pythagora’s theorem ([6, proposition 1.2.2], [13, proposition 1.5]) for the last two
equalities, as 𝐸 and 𝐹 are both orthonormal systems for ⟨·, ·⟩ and (·, ·)H respectively.
This shows that 𝑆 : Vect(𝐸) −→ H is an isometry, in particular it is 1−Lipschitz and
thus uniformly continuous. We can now use Proposition 1.29 to extend 𝑆 in a unique
way to a continuous linear map from H to H , that we still denote 𝑆. In particular, 𝑆
is uniformly continuous and satisfies

(𝑆𝑢, 𝑆𝑣)H = ⟨𝑢, 𝑣⟩

for any 𝑢, 𝑣 ∈ H , and as 𝐸 and 𝐹 are orthonormal bases, 𝑆 is a bijection. Moreover,
its inverse 𝑆−1 also satisfies

⟨𝑆−1𝑢, 𝑆−1𝑣⟩ = (𝑢, 𝑣)H

for any 𝑢, 𝑣 ∈ H , and is thus uniformly continuous as well. To sum up, 𝑆 is a homeo-
morphism from (H , ⟨·, ·⟩) to (H , (·, ·)H ). As (·, ·)H induces the same topology as ⟨·, ·⟩,
the map

IdH : (H , (·, ·)H ) −→ (H , ⟨·, ·⟩).
is a homeomorphism as well. Thus 𝑇 ··= IdH ◦ 𝑆 : (H , ⟨·, ·⟩) −→ (H , ⟨·, ·⟩) is a homeo-
morphism, and for all 𝑢, 𝑣 ∈ H , 𝑔 ∈ 𝐺, we have

(𝑢, 𝑣)H = (𝜋(𝑔)𝑢,𝜋(𝑔)𝑣)H ⇐⇒ ⟨𝑆−1𝑢, 𝑆−1𝑣⟩ = ⟨𝑆−1𝜋(𝑔)𝑢, 𝑆−1𝜋(𝑔)𝑣⟩
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⇐⇒ ⟨𝑇−1𝑢,𝑇−1𝑣⟩ = ⟨𝑇−1𝜋(𝑔)𝑢,𝑇−1𝜋(𝑔)𝑣⟩
⇐⇒ ⟨𝑢, 𝑣⟩ = ⟨𝑇−1𝜋(𝑔)𝑇𝑢,𝑇−1𝜋(𝑔)𝑇𝑣⟩
⇐⇒ ⟨𝑢, 𝑣⟩ = ⟨(𝑇−1𝜋(𝑔)𝑇)∗𝑇−1𝜋(𝑔)𝑇𝑢, 𝑣⟩.

Hence ⟨(𝑇−1𝜋(𝑔)𝑇)∗𝑇−1𝜋(𝑔)𝑇 − IdH )𝑢, 𝑣⟩ = 0 for all 𝑢, 𝑣 ∈ H and all 𝑔 ∈ 𝐺, and
Lemma 1.3 now forces (𝑇−1𝜋(𝑔)𝑇)∗𝑇−1𝜋(𝑔)𝑇 = IdH , 𝑔 ∈ 𝐺. Coupled with the fact
that 𝑇−1𝜋(𝑔)𝑇 is invertible for any 𝑔 ∈ 𝐺, we deduce that it is in fact unitary for all
𝑔 ∈ 𝐺, and thus the operator 𝑇 unitarises 𝜋. This establishes (i) and concludes our
proof. □

This lemma allows us to exhibit plenty examples of unitarisable groups. We begin
with the case of finite groups. For the proof, note that if 𝑋 is a vector space endowed
with two equivalent norms ∥ · ∥𝑋 , ∥ · ∥′𝑋 , then the metrics d𝑋 , d′

𝑋
corresponding to ∥ · ∥𝑋

and ∥ · ∥′
𝑋

are equivalent, and thus induce the same topologies by Proposition A.9. This
applies in particular to a ℂ−vector space 𝑋 endowed with two inner products ⟨·, ·⟩𝑋 ,
(·, ·)𝑋 that are equivalent, in the sense that there are constants 𝑐, 𝑐′ > 0 so that

𝑐⟨𝑥, 𝑥⟩𝑋 ≤ (𝑥, 𝑥)𝑋 ≤ 𝑐′⟨𝑥, 𝑥⟩𝑋
for all 𝑥 ∈ 𝑋 .

Corollary 3.9. Finite groups are unitarisable.

Proof. Let 𝐺 be a finite group, and 𝜋 : 𝐺 −→ Aut(H) be a uniformly bounded repre-
sentation of 𝐺. Define a new inner product on H by setting

(𝑢, 𝑣)H ··=
∑︁
𝑔∈𝐺

⟨𝜋(𝑔)𝑢,𝜋(𝑔)𝑣⟩

for any 𝑢, 𝑣 ∈ H . For all 𝑔 ∈ 𝐺, the map H ×H −→ ℂ, (𝑢, 𝑣) ↦−→ ⟨𝜋(𝑔)𝑢,𝜋(𝑔)𝑣⟩ is an
inner product by Remark 3.7 (applied with 𝑆 = 𝜋(𝑔−1)). As a finite sum of hermitian
inner products, (·, ·)H is indeed a hermitian inner product. It is 𝐺−invariant, as

(𝜋(ℎ)𝑢,𝜋(ℎ)𝑣)H =
∑︁
𝑔∈𝐺

⟨𝜋(𝑔)𝜋(ℎ)𝑢,𝜋(𝑔)𝜋(ℎ)𝑣⟩

=
∑︁
𝑔∈𝐺

⟨𝜋(𝑔ℎ)𝑢,𝜋(𝑔ℎ)𝑣⟩

=
∑︁
𝑡∈𝐺

⟨𝜋(𝑡)𝑢,𝜋(𝑡)𝑣⟩

= (𝑢, 𝑣)H
for any ℎ ∈ 𝐺 and 𝑢, 𝑣 ∈ H , as 𝜋 is a group morphism. Moreover, for 𝑢 ∈ H , one has

(𝑢, 𝑢)H =
∑︁
𝑔∈𝐺

⟨𝜋(𝑔)𝑢,𝜋(𝑔)𝑢⟩ ≤ |𝐺 | |𝜋 |2⟨𝑢, 𝑢⟩
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by Cauchy-Schwarz inequality, and on the other hand

⟨𝑢, 𝑢⟩ = ⟨𝜋(𝑒𝐺)𝑢,𝜋(𝑒𝐺)𝑢⟩ ≤ (𝑢, 𝑢)H .

Thus the topologies induced by ⟨·, ·⟩ and (·, ·)H are the same, and 𝜋 is unitarisable by
Lemma 3.8. We conclude that 𝐺 is unitarisable. □

We now establish two stability properties for the class of unitarisable groups. The
first one deals with quotient groups.

Proposition 3.10. Let 𝐺 be a unitarisable group. If 𝑁 ◁ 𝐺, then 𝐺/𝑁 is uni-
tarisable.

Proof. Let 𝜋 : 𝐺/𝑁 −→ Aut(H) be a uniformly bounded representation of 𝐺/𝑁. De-
note 𝑞 : 𝐺 −→ 𝐺/𝑁 the quotient map, which is a surjective group homomorphism.
Then 𝜋 ◦ 𝑞 is a representation of 𝐺 on H , and as 𝜋 is uniformly bounded, so is 𝜋 ◦ 𝑞.
As 𝐺 is unitarisable, we find 𝑆 ∈ Aut(H) so that 𝑆−1(𝜋 ◦ 𝑞) (𝑔)𝑆 is unitary for ev-
ery 𝑔 ∈ 𝐺. As 𝑞 is surjective, 𝑆−1𝜋(ℎ)𝑆 is unitary for any ℎ ∈ 𝐺/𝑁, whence 𝜋 is
unitarisable. Thus 𝐺/𝑁 is unitarisable. □

The second property states that unitarisability passes to subgroups, and its proof
is more involved. The idea is to see that representations of a subgroup always induce
representations of the bigger group, and that the new representation is still uniformly
bounded if the initial one was. Let us describe this "induction" of representation in
details.

Let 𝐺 be a group, 𝐻 be a subgroup of 𝐺, and 𝜋 : 𝐻 −→ Aut(V) be a uniformly
bounded representation of 𝐻 on a Hilbert space (V, ⟨·, ·⟩V). Denote 𝐶 > 0 a uniform
bound for ∥𝜋(ℎ)∥, ℎ ∈ 𝐻. Fix also 𝑆 ⊂ 𝐺 a set of representatives for the left cosets.
In this way, for every 𝑥 ∈ 𝐺, there is a unique ℎ𝑥 ∈ 𝐻 so that 𝑥ℎ𝑥 ∈ 𝑆, and we call
𝑠𝑥 ··= 𝑥ℎ𝑥 ∈ 𝑆. Note the relations

ℎ𝑠 = 𝑒𝐺, ℎ𝑔ℎ−1 = ℎℎ𝑔

valid for every 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 and 𝑠 ∈ 𝑆. Indeed, if 𝑠 ∈ 𝑆, ℎ𝑠 is the unique element of 𝐻
so that 𝑠ℎ𝑠 ∈ 𝑆, and on the other hand 𝑠𝑒𝐺 = 𝑠 ∈ 𝑆, so ℎ𝑠 = 𝑒𝐺. Likewise, for 𝑔 ∈ 𝐺,
ℎ ∈ 𝐻 we have

𝑔ℎ−1(ℎℎ𝑔) = 𝑔ℎ𝑔 ∈ 𝑆
and the uniqueness condition provides ℎ𝑔ℎ−1 = ℎℎ𝑔.

We are going to show that the initial action of 𝐻 on V induces an action of 𝐺 on
the Hilbert space ℓ 2(𝐺/𝐻,V). To describe this action, we first exhibit another model
for this space, via an isometric isomorphism, on which we choose a natural action of
the group. We then push this action through the isomorphism to obtain an action of
𝐺 on ℓ 2(𝐺/𝐻,V).
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In this view, consider the set

W ··= {𝜑 : 𝐺 −→ V | 𝜑(𝑔ℎ−1) = 𝜋(ℎ)𝜑(𝑔) for all 𝑔 ∈ 𝐺, ℎ ∈ 𝐻}

with its natural structure of ℂ−vector space, where addition and multiplication by
complex scalars are defined pointwise, using the ℂ−vector space structure of V. In
fact, this space is isomorphic to the ℂ−vector space F (𝐺/𝐻,V) of functions from𝐺/𝐻
to V. To see this, define

𝐵 : F (𝐺/𝐻,V) −→ W
�̃� ↦−→ 𝐵�̃�

where (𝐵�̃�) (𝑥) ··= 𝜋(ℎ𝑥)�̃�(𝑥𝐻), for any 𝑥 ∈ 𝐺. The other way around, set

𝐵 : W −→ F (𝐺/𝐻,V)
𝜑 ↦−→ 𝐵𝜑

where (𝐵𝜑) (𝑥𝐻) ··= 𝜋(ℎ−1
𝑥 )𝜑(𝑥), for any 𝑥𝐻 ∈ 𝐺/𝐻.

Lemma 3.11. The maps 𝐵 and 𝐵 are well-defined, linear, bijective and inverses
of each other.

Proof. We first prove that given 𝜑 ∈ W, the function 𝐵𝜑 is well-defined, i.e. its value
on a left coset does not depend on a particular choice of representative for that coset.
Suppose then that 𝑥𝐻 = 𝑥′𝐻 for some 𝑥, 𝑥′ ∈ 𝐺. This implies 𝑠𝑥 = 𝑠𝑥′ , so 𝑥ℎ𝑥 = 𝑥′ℎ𝑥′ ,
and thus 𝑥′ = 𝑥ℎ𝑥ℎ−1

𝑥′ . It follows that

(𝐵𝜑) (𝑥′𝐻) = 𝜋(ℎ−1
𝑥′ )𝜑(𝑥′)

= 𝜋(ℎ−1
𝑥′ )𝜑(𝑥ℎ𝑥ℎ−1

𝑥′ )
= 𝜋(ℎ−1

𝑥′ )𝜑(𝑥(ℎ𝑥′ℎ−1
𝑥 )−1)

= 𝜋(ℎ−1
𝑥′ )𝜋(ℎ𝑥′ℎ−1

𝑥 )𝜑(𝑥)
= 𝜋(ℎ−1

𝑥′ )𝜋(ℎ𝑥′)𝜋(ℎ−1
𝑥 )𝜑(𝑥)

= 𝜋(ℎ−1
𝑥 )𝜑(𝑥)

= (𝐵𝜑) (𝑥𝐻)

using that 𝜑 ∈ W for the fourth equality, and that 𝜋 : 𝐻 −→ Aut(V) is a group
homomorphism for the fifth one (in particular 𝜋(𝑒𝐺) = IdV). Thus 𝐵𝜑 is indeed a
function on the quotient 𝐺/𝐻, so that 𝐵 is well-defined.

Now, we show that 𝐵 is well-defined, proving that 𝐵�̃� ∈ W if �̃� is a function on
𝐺/𝐻. Fix group elements 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 and write

(𝐵�̃�) (𝑔ℎ−1) = 𝜋(ℎ𝑔ℎ−1)�̃�(𝑔ℎ−1𝐻)
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= 𝜋(ℎℎ𝑔)�̃�(𝑔𝐻)
= 𝜋(ℎ)𝜋(ℎ𝑔)�̃�(𝑔𝐻)
= 𝜋(ℎ) (𝐵�̃�) (𝑔)

using that ℎ𝑔ℎ−1 = ℎℎ𝑔 and that 𝜋 is a group homomorphism from 𝐻 to Aut(V). Thus
𝐵�̃� ∈ W for any function �̃� on the quotient. Additionally, if �̃�1, �̃�2 ∈ F (𝐺/𝐻,V),
𝜆 ∈ ℂ and 𝑥 ∈ 𝐺, then

𝐵(�̃�1 + 𝜆�̃�2) (𝑥) = 𝜋(ℎ𝑥)
(
(�̃�1 + 𝜆�̃�2) (𝑥𝐻)

)
= 𝜋(ℎ𝑥)

(
�̃�1(𝑥𝐻) + 𝜆�̃�2(𝑥𝐻)

)
= 𝜋(ℎ𝑥)�̃�1(𝑥𝐻) + 𝜆𝜋(ℎ𝑥)�̃�2(𝑥𝐻)
= 𝐵�̃�1(𝑥) + 𝜆𝐵�̃�2(𝑥)
= (𝐵�̃�1 + 𝜆𝐵�̃�2) (𝑥)

whence 𝐵(�̃�1 + 𝜆�̃�2) = 𝐵�̃�1 + 𝜆𝐵�̃�2. This shows that 𝐵 is linear.
Now we prove that 𝐵 ◦ 𝐵 = IdW . Let 𝜑 ∈ W, and observe that

(𝐵 ◦ 𝐵) (𝜑) (𝑥) = 𝐵(𝐵𝜑) (𝑥)
= 𝜋(ℎ𝑥) (𝐵𝜑(𝑥𝐻))
= 𝜋(ℎ𝑥) (𝜋(ℎ−1

𝑥 )𝜑(𝑥))
= (𝜋(ℎ𝑥)𝜋(ℎ−1

𝑥 )) (𝜑(𝑥))
= IdV (𝜑(𝑥))
= 𝜑(𝑥)

for all 𝑥 ∈ 𝐺. Above we used the definitions of 𝐵 and 𝐵, and the fact that 𝜋 is a group
homomorphism (in particular 𝜋(𝑒𝐺) = IdV). Thus we conclude (𝐵 ◦ 𝐵) (𝜑) = 𝜑 for
every 𝜑 ∈ W, so 𝐵 ◦ 𝐵 = IdW . In a similar way, let �̃� ∈ F (𝐺/𝐻,V) and 𝑥 ∈ 𝐺, and
write

(𝐵 ◦ 𝐵) (�̃�) (𝑥𝐻) = 𝐵(𝐵�̃�) (𝑥𝐻)
= 𝜋(ℎ−1

𝑥 ) (𝐵�̃�(𝑥))
= 𝜋(ℎ−1

𝑥 ) (𝜋(ℎ𝑥)�̃�(𝑥𝐻))
= �̃�(𝑥𝐻).

Thus we get 𝐵 ◦ 𝐵 = IdF (𝐺/𝐻,V). Consequently, 𝐵 is linear as the inverse of a linear
map. This terminates the proof. □

We have then an isomorphism of ℂ−vector spaces

W � F (𝐺/𝐻,V).

Furthermore, F (𝐺/𝐻,V) carries the norm ∥ · ∥2 defined as

∥�̃�∥2
2 ··=

∑︁
𝑠∈𝑆

∥�̃�(𝑠𝐻)∥2
V , �̃� ∈ F (𝐺/𝐻,V).
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This norm possibly takes infinite values, and we distinguish ℓ 2(𝐺/𝐻,V) the complete
ℂ−vector subspace of functions �̃� from𝐺/𝐻 to V with ∥�̃�∥2

2 < ∞. It is a Hilbert space,
because its norm derives from the inner product

⟨�̃�1, �̃�2⟩2 ··=
∑︁
𝑠∈𝑆

⟨�̃�1(𝑠𝐻), �̃�2(𝑠𝐻)⟩V

and this last expression does make sense for �̃�1, �̃�2 ∈ ℓ 2(𝐺/𝐻,V), thanks to the
Cauchy-Schwarz inequality. Now we endow W with a normed vector space structure,
pushing the norm on F (𝐺/𝐻,V) through 𝐵. More precisely, for 𝜑 ∈ W, we set

∥𝜑∥W ··= ∥𝐵𝜑∥2 = ∥𝐵−1𝜑∥2

and the subspace ℓ 2(𝐺/𝐻,V) of F (𝐺/𝐻,V) is identified with the subspace

Ŵ ··= {𝜑 ∈ W : ∥𝜑∥2
W < ∞}.

In this way, the inner product ⟨·, ·⟩2 on ℓ 2(𝐺/𝐻,V) is pushed along 𝐵 to give rise to a
hermitian inner product (by Remark 3.7) on Ŵ, given by

⟨𝜑1,𝜑2⟩Ŵ ··= ⟨𝐵−1𝜑1, 𝐵
−1𝜑2⟩2

for all 𝜑1,𝜑2 ∈ Ŵ. In particular, (Ŵ, ⟨·, ·⟩Ŵ) is a Hilbert space, and the isomor-
phisms 𝐵, 𝐵 are isometric.

We define an action of 𝐺 on W as follows: for 𝑔 ∈ 𝐺 and 𝜑 ∈ W, define 𝑔 ·W 𝜑 as

(𝑔 ·W 𝜑) (𝑥) ··= 𝜑(𝑔−1𝑥)

for all 𝑥 ∈ 𝐺. This is a group action. Indeed, if 𝑔 ∈ 𝐺 and 𝜑 ∈ W then

(𝑔 ·W 𝜑) (𝑥𝑦−1) = 𝜑(𝑔−1𝑥𝑦−1)
= 𝜋(𝑦)𝜑(𝑔−1𝑥)
= 𝜋(𝑦) (𝑔 ·W 𝜑) (𝑥)

for any 𝑥 ∈ 𝐺, 𝑦 ∈ 𝐻, using that 𝜑 ∈ W for the second equality. Thus 𝑔 · 𝜑 ∈ W as
well. Secondly, we have 𝑒𝐺 ·W 𝜑 = 𝜑 for any 𝜑 ∈ W, and if 𝑔1, 𝑔2 ∈ 𝐺 and 𝜑 ∈ W we
compute

(𝑔1 ·W (𝑔2 ·W𝜑)) (𝑥) = (𝑔2 ·W𝜑) (𝑔−1
1 𝑥) = 𝜑(𝑔−1

2 𝑔−1
1 𝑥) = 𝜑((𝑔1𝑔2)−1𝑥) = ((𝑔1𝑔2) ·W𝜑) (𝑥)

for any 𝑥 ∈ 𝐺, which shows that 𝑔1 ·W (𝑔2 ·W 𝜑) = (𝑔1𝑔2) ·W 𝜑.
This action of 𝐺 on W is now transported to an action of 𝐺 on F (𝐺/𝐻,V), setting

𝑔 · �̃� ··= 𝐵−1(𝑔 ·W 𝐵�̃�)

for any 𝑔 ∈ 𝐺 and �̃� ∈ F (𝐺/𝐻,V). We can provide an explicit formula to describe
this action. Let �̃� ∈ F (𝐺/𝐻,V), 𝑔 ∈ 𝐺, and 𝑠 ∈ 𝑆, and write

(𝑔 · �̃�) (𝑠𝐻) = 𝐵−1(𝑔 ·W 𝐵�̃�) (𝑠𝐻)
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= 𝜋(ℎ−1
𝑠 ) (𝑔 ·W 𝐵�̃�) (𝑠)

= (𝑔 ·W 𝐵�̃�) (𝑠)
= 𝐵�̃�(𝑔−1𝑠)
= 𝜋(ℎ𝑔−1𝑠)�̃�(𝑔−1𝑠𝐻).

Here the third equality follows from ℎ𝑠 = 𝑒𝐺 (and thus ℎ−1
𝑠 = 𝑒𝐺, so 𝜋(ℎ−1

𝑠 ) = 𝜋(𝑒𝐺) =
IdV).

The fact that 𝜋 is uniformly bounded implies that this action preserves the sub-
space ℓ 2(𝐺/𝐻,V) ⊂ F (𝐺/𝐻,V). Indeed, if �̃� ∈ ℓ 2(𝐺/𝐻,V) and 𝑔 ∈ 𝐺, one has

∥𝑔 · �̃�∥2
2 =

∑︁
𝑠∈𝑆

∥(𝑔 · �̃�) (𝑠𝐻)∥2
V

=
∑︁
𝑠∈𝑆

∥𝜋(ℎ𝑔−1𝑠)�̃�(𝑔−1𝑠𝐻)∥2
V

≤ 𝐶2
∑︁
𝑠∈𝑆

∥�̃�(𝑔−1𝑠𝐻)∥2
V

= 𝐶2∥�̃�∥2
2 < ∞

as ∥�̃�∥2
2 < ∞.

To sum up: given a uniformly bounded representation 𝜋 of 𝐻 on a Hilbert space
V, we constructed an action of 𝐺 on the Hilbert space ℓ 2(𝐺/𝐻,V), or equivalently a
representation of 𝐺 on ℓ 2(𝐺/𝐻,V). We denote it �̂� : 𝐺 −→ Aut(ℓ 2(𝐺/𝐻,V)), i.e.

�̂�(𝑔)�̃� = 𝑔 · �̃�

where 𝑔 ∈ 𝐺, �̃� ∈ ℓ 2(𝐺/𝐻,V), and we call �̂� the induced representation of 𝐺 by 𝜋.
We have now all we need to establish the following.

Proposition 3.12. Let 𝐺 be a unitarisable group. If 𝐻 ⩽ 𝐺, then 𝐻 is unitaris-
able.

Proof. Let 𝜋 : 𝐻 −→ Aut(V) be a uniformly bounded representation of 𝐻 on a Hilbert
space V. Let 𝐶 > 0 be a uniform bound for ∥𝜋(ℎ)∥, ℎ ∈ 𝐻, and consider �̂� the induced
representation of 𝐺 on ℓ 2(𝐺/𝐻,V). With this notation, the computation preceding
this proof shows that

∥�̂�(𝑔)�̃�∥2
2 ≤ 𝐶2∥�̃�∥2

2

for all 𝑔 ∈ 𝐺 and �̃� ∈ ℓ 2(𝐺/𝐻,V). Hence ∥�̂�(𝑔)∥ ≤ 𝐶 for any 𝑔 ∈ 𝐺, so �̂� is uniformly
bounded, in fact with the same bound as 𝜋. The group 𝐺 being unitarisable, �̂� is uni-
tarisable, and Lemma 3.8 provides a 𝐺−invariant inner product [·, ·] on ℓ 2(𝐺/𝐻,V),
inducing the same topology as ⟨·, ·⟩2.
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Now V is a subspace of ℓ 2(𝐺/𝐻,V), identifying a vector 𝑣 ∈ V to the function �̃�𝑣
supported on the trivial coset 𝑒𝐺𝐻, defined by

(�̃�𝑣) (𝑠𝐻) ··=
{
𝑣 if 𝑠𝐻 = 𝑒𝐺𝐻

0 otherwise

and we claim that, for ℎ ∈ 𝐻, the action of the operator �̂�(ℎ) on this copy ofV preserves
V and furthermore coincides with the initial action of 𝜋(ℎ) on V. For this, let ℎ ∈ 𝐻,
𝑣 ∈ V. We prove that

�̂�(ℎ)�̃�𝑣 = �̃�𝜋(ℎ)𝑣

which shows both claims at the same time. Let 𝑠 ∈ 𝑆, and write that

(�̂�(ℎ)�̃�𝑣) (𝑠𝐻) = 𝜋(ℎℎ−1𝑠)�̃�𝑣(ℎ−1𝑠𝐻)

=

{
𝜋(ℎℎ−1𝑠)𝑣 if ℎ−1𝑠𝐻 = 𝑒𝐺𝐻

0 otherwise

=

{
𝜋(ℎ)𝑣 if ℎ−1𝑠𝐻 = 𝑒𝐺𝐻

0 otherwise
= �̃�𝜋(ℎ)𝑣(𝑠𝐻)

because the condition ℎ−1𝑠𝐻 = 𝑒𝐺𝐻 is equivalent to 𝑠 ∈ 𝐻, and this implies ℎℎ−1𝑠 = ℎ.
Now, observe that by definition, the restriction of ⟨·, ·⟩2 to V coincides with ⟨·, ·⟩V .
Thus the restriction of [·, ·] to V induces the same topology on V as ⟨·, ·⟩V , and the
representation 𝜋 is 𝐻−invariant for [·, ·], as it is the restriction of a representation
which is 𝐺−invariant for [·, ·]. Invoking once again Lemma 3.8, 𝜋 is unitarisable, and
therefore so is 𝐻, as announced. The proof is complete. □

To get new examples of unitarisable groups, we establish now Dixmier’s result.

Theorem 3.13. Amenable groups are unitarisable.

For the proof, we will use the characterization of amenability in terms of the ex-
istence of a 𝐺−invariant mean on ℓ∞(𝐺) (as explained in Appendix B, theorem B.9).
Note that if𝑚 ∈ M′(𝐺) is such a𝐺−invariant mean, then𝑚 is increasing, in the sense
that for 𝑓1, 𝑓2 ∈ ℓ∞(𝐺),

𝑓1 ≤ 𝑓2 =⇒ 𝑚( 𝑓1) ≤ 𝑚( 𝑓2).
Indeed if 𝑓1 ≤ 𝑓2 then 𝑓2 − 𝑓1 ≥ 0 and thus 𝑚( 𝑓2 − 𝑓1) ≥ 0. The linearity of 𝑚 now leads
to 𝑚( 𝑓1) ≤ 𝑚( 𝑓2).

Proof. Let 𝐺 be an amenable group, and denote 𝑚 ∈ M′(𝐺) a 𝐺−invariant mean. Let
𝜋 : 𝐺 −→ Aut(H) be a uniformly bounded representation of 𝐺. For 𝑢, 𝑣 ∈ H , define

𝑓𝑢,𝑣 : 𝐺 −→ ℂ
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𝑔 ↦−→ ⟨𝜋(𝑔−1)𝑢,𝜋(𝑔−1)𝑣⟩.

Let 𝑢, 𝑣 ∈ H . By the Cauchy-Schwarz inequality and the uniform boundedness of 𝜋,
we first have

| 𝑓𝑢,𝑣(𝑔) | = |⟨𝜋(𝑔−1)𝑢,𝜋(𝑔−1)𝑣⟩| ≤ ∥𝜋(𝑔−1)∥2∥𝑢∥∥𝑣∥ ≤ |𝜋 |2∥𝑢∥∥𝑣∥

for any 𝑔 ∈ 𝐺, and thus ∥ 𝑓𝑢,𝑣∥∞ ≤ |𝜋 |2∥𝑢∥∥𝑣∥. In particular, 𝑓𝑢,𝑣 ∈ ℓ∞(𝐺) and we may
define a map

(·, ·)H : H ×H −→ ℂ

(𝑢, 𝑣) ↦−→ 𝑚( 𝑓𝑢,𝑣).

We claim that (·, ·)H is a 𝐺−invariant inner product on H . Fix 𝑢, 𝑣, 𝑤 ∈ H , 𝜆 ∈ ℂ.
As 𝜋(𝑔) is a linear operator for all 𝑔 ∈ 𝐺 and as ⟨·, ·⟩ is linear in the first variable, we
have

𝑓𝜆𝑢+𝑣,𝑤(𝑔) = ⟨𝜋(𝑔−1) (𝜆𝑢 + 𝑣),𝜋(𝑔−1)𝑤⟩
= 𝜆⟨𝜋(𝑔−1)𝑢,𝜋(𝑔−1)𝑤⟩ + ⟨𝜋(𝑔−1)𝑣,𝜋(𝑔−1)𝑤⟩
= 𝜆𝑓𝑢,𝑤(𝑔) + 𝑓𝑣,𝑤(𝑔)
= (𝜆𝑓𝑢,𝑤 + 𝑓𝑣,𝑤) (𝑔)

for all 𝑔 ∈ 𝐺, so 𝑓𝜆𝑢+𝑣,𝑤 = 𝜆𝑓𝑢,𝑤 + 𝑓𝑣,𝑤 and, as 𝑚 is linear, it follows that

(𝜆𝑢 + 𝑣, 𝑤)H = 𝑚( 𝑓𝜆𝑢+𝑣,𝑤)
= 𝑚(𝜆𝑓𝑢,𝑤 + 𝑓𝑣,𝑤)
= 𝜆𝑚( 𝑓𝑢,𝑤) + 𝑚( 𝑓𝑣,𝑤)
= 𝜆(𝑢, 𝑤)H + (𝑣, 𝑤)H

for all 𝑢, 𝑣, 𝑤 ∈ H , 𝜆 ∈ ℂ. Hence (·, ·)H is linear in the first variable.
Next, by the linearity of 𝑚 it holds that 𝑚( 𝑓 ) = 𝑚( 𝑓 ) for every 𝑓 ∈ ℓ∞(𝐺), and thus

(𝑢, 𝑣)H = 𝑚( 𝑓𝑢,𝑣) = 𝑚( 𝑓𝑢,𝑣)

for all 𝑢, 𝑣 ∈ H . As ⟨·, ·⟩ is an inner product, we also have

𝑓𝑢,𝑣(𝑔) = ⟨𝜋(𝑔−1)𝑢,𝜋(𝑔−1)𝑣⟩
= ⟨𝜋(𝑔−1)𝑣,𝜋(𝑔−1)𝑢⟩
= 𝑓𝑣,𝑢(𝑔)

for all 𝑔 ∈ 𝐺, thus 𝑓𝑢,𝑣 = 𝑓𝑣,𝑢 for all 𝑢, 𝑣 ∈ H . We deduce that

(𝑢, 𝑣)H = 𝑚( 𝑓𝑢,𝑣) = 𝑚( 𝑓𝑣,𝑢) = (𝑣, 𝑢)H

for all 𝑢, 𝑣 ∈ H , and (·, ·)H is hermitian.
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Lastly, for 𝑢 ∈ H , one has
𝑓𝑢,𝑢(𝑔) = ⟨𝜋(𝑔−1)𝑢,𝜋(𝑔−1)𝑢⟩ = ∥𝜋(𝑔−1)𝑢∥2 ≥ 0

and so 𝑓𝑢,𝑢 ≥ 0, whence 𝑚( 𝑓𝑢,𝑢) ≥ 0. This means that (𝑢, 𝑢) ≥ 0, so (·, ·)H is positive
definite. It remains to prove it is non-degenerate, i.e. if (𝑢, 𝑢)H = 0, then 𝑢 = 0. We
show rather the contrapositive. Recall that if 𝐴 ∈ Aut(H) then ∥𝐴𝑢∥ ≥ 1

∥𝐴−1∥ ∥𝑢∥ for
all 𝑢 ∈ H . If 𝑢 ≠ 0 and 𝑔 ∈ 𝐺, we use this observation with 𝐴 = 𝜋(𝑔−1) to obtain

𝑓𝑢,𝑢(𝑔) = ∥𝜋(𝑔−1)𝑢∥2 ≥ 1
|𝜋 |2

∥𝑢∥2.

This holds for any 𝑔 ∈ 𝐺, whence 𝑓𝑢,𝑢 ≥ 1
|𝜋 |2 ∥𝑢∥

21𝐺. As 𝑚 is increasing, linear and
takes the value 1 on 1𝐺, we get

(𝑢, 𝑢)H = 𝑚( 𝑓𝑢,𝑢) ≥ 𝑚
(

1
|𝜋 |2

∥𝑢∥21𝐺
)
=

1
|𝜋 |2

∥𝑢∥2𝑚(1𝐺) =
1

|𝜋 |2
∥𝑢∥2 > 0

as desired. This proves that (·, ·)H is a hermitian inner product.
Its 𝐺−invariance is a consequence of the 𝐺−invariance of 𝑚, as for 𝑢, 𝑣 ∈ H and

𝑔 ∈ 𝐺, we have
𝑓𝜋(𝑔)𝑢,𝜋(𝑔)𝑣(ℎ) = ⟨𝜋(ℎ−1)𝜋(𝑔)𝑢,𝜋(ℎ−1)𝜋(𝑔)𝑣⟩

= ⟨𝜋(ℎ−1𝑔)𝑢,𝜋(ℎ−1𝑔)𝑣⟩
= ⟨𝜋((𝑔−1ℎ)−1)𝑢,𝜋((𝑔−1ℎ)−1)𝑣⟩
= 𝑓𝑢,𝑣(𝑔−1ℎ)
= (𝑔𝑓𝑢,𝑣) (ℎ)

for any ℎ ∈ 𝐺, using that 𝜋 is a group homomorphism. We deduce the equality
𝑓𝜋(𝑔)𝑢,𝜋(𝑔)𝑣 = 𝑔𝑓𝑢,𝑣 for any 𝑔 ∈ 𝐺 and 𝑢, 𝑣 ∈ H , and this provides

(𝜋(𝑔)𝑢,𝜋(𝑔)𝑣)H = 𝑚( 𝑓𝜋(𝑔)𝑢,𝜋(𝑔)𝑣) = 𝑚(𝑔𝑓𝑢,𝑣) = 𝑚( 𝑓𝑢,𝑣) = (𝑢, 𝑣)H
for all 𝑔 ∈ 𝐺, 𝑢, 𝑣 ∈ H , whence (·, ·)H is 𝐺−invariant.

Denoting ∥ · ∥ (·,·)H the norm induced by this new inner product, we have on the one
hand

∥𝑢∥ (·,·)H =
√︁
(𝑢, 𝑢)H =

√︁
𝑚( 𝑓𝑢,𝑢) ≤

√︁
∥ 𝑓𝑢,𝑢∥ ≤

√︁
|𝜋 |2∥𝑢∥2 = |𝜋 |∥𝑢∥

for any 𝑢 ∈ H . On the other hand ∥𝑢∥2 = ∥𝜋(𝑔)𝜋(𝑔−1)𝑢∥2 ≤ |𝜋 |2 𝑓𝑢,𝑢(𝑔) for any 𝑢 ∈ H
and 𝑔 ∈ 𝐺, and as 𝑚 is increasing we get

∥𝑢∥2 = 𝑚(∥𝑢∥21𝐺) ≤ 𝑚( |𝜋 |2 𝑓𝑢,𝑢) = |𝜋 |2(𝑢, 𝑢)H
and taking the square roots yields ∥𝑢∥ ≤ |𝜋 |∥𝑢∥ (·,·)H for all 𝑢 ∈ H . We have then
established that

1
|𝜋 | ∥𝑢∥ ≤ ∥𝑢∥ (·,·)H ≤ |𝜋 |∥𝑢∥

for any 𝑢 ∈ H , i.e. ∥ · ∥ and ∥ · ∥ (·,·)H are equivalent norms on H . Thus ⟨·, ·⟩ and (·, ·)H
induce the same topology, and by Lemma 3.8 this implies that 𝜋 is unitarisable. We
conclude that 𝐺 is unitarisable, and the proof is complete. □
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Using results from Appendix B, we get new examples of unitarisable groups.

Corollary 3.14. Any solvable group is unitarisable.
In particular, ℤ𝑑, ℚ𝑑 and ℝ𝑑 are unitarisable, for any 𝑑 ≥ 1.

Proof. Combine Corollary B.20 and Theorem 3.13. □

Let us present now another example of application of Theorem 3.13.

Example 3.15. Let 𝐺 be the Heisenberg group of 3 × 3 matrices with integer coeffi-
cients, i.e.

𝐺 ··=
©«

1 𝑥 𝑧

0 1 𝑦

0 0 1
ª®¬
���� 𝑥, 𝑦, 𝑧 ∈ ℤ

 .
The subgroup

𝑁 ··=
©«

1 0 𝑧

0 1 0
0 0 1

ª®¬
���� 𝑧 ∈ ℤ


is the center of 𝐺, and therefore is normal in 𝐺. Clearly 𝑁 � ℤ, and the quotient 𝐺/𝑁
is isomorphic to ℤ2 via the surjective group homomorphism

𝜑 : 𝐺 −→ ℤ2

©«
1 𝑥 𝑧

0 1 𝑦

0 0 1
ª®¬ ↦−→ (𝑥, 𝑦).

Hence 𝐺 is an extension of its center by 𝐺/𝑁 � ℤ2. As ℤ and ℤ2 are amenable, it
follows that 𝐺 is amenable, and in particular unitarisable by Theorem 3.13.

3.2 Non-unitarisability of non-abelian free groups

The first example of a non-unitarisable group, namely SL2(ℝ), was provided in 1955
by Ehrenpreis and Mautner [14]. We focus here on another example, the non-abelian
free group on countably many generators. Coupled with stability properties proved
earlier, this will imply that every group containing a non-abelian free subgroup, for
instance SL2(ℝ), is not unitarisable.

The concept we introduce to construct uniformly bounded non-unitarisable repre-
sentations of free groups is the one of a derivation.
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Definition 3.16. Let 𝜋 be a unitary representation of 𝐺.
A map 𝐷 : 𝐺 −→ B(H) is called a derivation with respect to 𝜋 if

𝐷(𝑔ℎ) = 𝐷(𝑔)𝜋(ℎ) + 𝜋(𝑔)𝐷(ℎ)

for all 𝑔, ℎ ∈ 𝐺.

As for representations, a derivation 𝐷 is called bounded if there exists 𝐶 > 0 so
that ∥𝐷(𝑔)∥ ≤ 𝐶 for all 𝑔 ∈ 𝐺.

Given a unitary representation 𝜋, it is possible to construct a wide set of deriva-
tions: pick 𝑇 ∈ B(H), and define 𝐷(𝑔) ··= 𝜋(𝑔)𝑇 − 𝑇𝜋(𝑔), 𝑔 ∈ 𝐺. Indeed one has

𝐷(𝑔ℎ) = 𝜋(𝑔ℎ)𝑇 − 𝑇𝜋(𝑔ℎ)
= 𝜋(𝑔)𝜋(ℎ)𝑇 − 𝜋(𝑔)𝑇𝜋(ℎ) + 𝜋(𝑔)𝑇𝜋(ℎ) − 𝑇𝜋(𝑔)𝜋(ℎ)
= 𝜋(𝑔)𝐷(ℎ) + 𝐷(𝑔)𝜋(ℎ)

for all 𝑔, ℎ ∈ 𝐺. Such a derivation is called inner.
Given now 𝜋 a unitary representation and a derivation 𝐷, one can produce another

representation of 𝐺, by setting

𝜋𝐷(𝑔) ··=
(
𝜋(𝑔) 𝐷(𝑔)

0 𝜋(𝑔)

)
∈ B(H ⊕ H).

Properties of 𝜋𝐷 are now completely determined by those of 𝐷.

Proposition 3.17. Let 𝜋 be a unitary representation of𝐺, and 𝐷 : 𝐺 −→ B(H).
The following equivalences hold.

(i) 𝜋𝐷 is a representation of 𝐺 if and only if 𝐷 is a derivation.

(ii) 𝜋𝐷 is uniformly bounded if and only if 𝐷 is bounded.

(iii) 𝜋𝐷 is unitarisable if and only if 𝐷 is inner.

Proof. (i) We directly compute that

𝜋𝐷(𝑔)𝜋𝐷(ℎ) =
(
𝜋(𝑔) 𝐷(𝑔)

0 𝜋(𝑔)

) (
𝜋(ℎ) 𝐷(ℎ)

0 𝜋(ℎ)

)
=

(
𝜋(𝑔ℎ) 𝜋(𝑔)𝐷(ℎ) + 𝐷(𝑔)𝜋(ℎ)

0 𝜋(𝑔ℎ)

)
using that 𝜋 is a group homomorphism for the last equality. By definition, 𝜋𝐷 is a
representation of 𝐺 if 𝜋𝐷(𝑔ℎ) = 𝜋𝐷(𝑔)𝜋𝐷(ℎ) for all 𝑔, ℎ ∈ 𝐺, and this happens if
and only if 𝐷(𝑔ℎ) = 𝜋(𝑔)𝐷(ℎ) + 𝐷(𝑔)𝜋(ℎ) for all 𝑔, ℎ ∈ 𝐺, i.e. if and only if 𝐷 is a
derivation.
(ii) Before proving the equivalence, we observe that

∥𝜋𝐷(𝑔) (𝑢, 𝑣)∥H⊕H = ∥(𝜋(𝑔)𝑢 + 𝐷(𝑔)𝑣,𝜋(𝑔)𝑣)∥H⊕H
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≤ ∥𝜋(𝑔)𝑢 + 𝐷(𝑔)𝑣∥ + ∥𝜋(𝑔)𝑣∥
≤ ∥𝜋(𝑔)∥(∥𝑢∥ + ∥𝑣∥) + ∥𝐷(𝑔)𝑣∥
≤
√

2∥(𝑢, 𝑣)∥H⊕H + ∥𝐷(𝑔)𝑣∥
for all 𝑔 ∈ 𝐺 and 𝑢, 𝑣 ∈ H , as 𝜋 is unitary. Now we show the claimed equivalence.

To begin, assume that 𝐷 is bounded by a constant𝐶 > 0. We have from the previous
inequality that

∥𝜋𝐷(𝑔) (𝑢, 𝑣)∥H⊕H ≤
√

2∥(𝑢, 𝑣)∥H⊕H + 𝐶∥𝑣∥ ≤ (𝐶 +
√

2)∥(𝑢, 𝑣)∥H⊕H

for all 𝑔 ∈ 𝐺 and 𝑢, 𝑣 ∈ H . This implies ∥𝜋𝐷(𝑔)∥ ≤ 𝐶 +
√

2 for any 𝑔 ∈ 𝐺, whence 𝜋𝐷
is uniformly bounded.

Conversely, suppose that 𝜋𝐷 is uniformly bounded by a constant 𝐶 > 0. Then

∥𝐷(𝑔)𝑣∥ ≤ ∥𝜋𝐷(𝑔) (0, 𝑣)∥H⊕H ≤ 𝐶∥(0, 𝑣)∥H⊕H = 𝐶∥𝑣∥
for every 𝑔 ∈ 𝐺 and 𝑣 ∈ H . Hence ∥𝐷(𝑔)∥ ≤ 𝐶 for all 𝑔 ∈ 𝐺, and 𝐷 is bounded.
(iii) If 𝐷 is inner, we may find 𝑇 ∈ B(H) so that 𝐷(𝑔) = 𝜋(𝑔)𝑇 −𝑇𝜋(𝑔), for all 𝑔 ∈ 𝐺.
Consider then the operator

𝑆 ··=
(
IdH 𝑇

0 IdH

)
on H ⊕ H . It is a bounded operator, as

∥𝑆(𝑢, 𝑣)∥2
H⊕H = ∥(𝑢 + 𝑇𝑣, 𝑣)∥2

H⊕H
= ∥𝑢 + 𝑇𝑣∥2 + ∥𝑣∥2

≤ (∥𝑢 + 𝑇𝑣∥ + ∥𝑣∥)2

≤ (∥𝑢∥ + (∥𝑇 ∥ + 1)∥𝑣∥)2

≤ 2(∥𝑢∥2 + (∥𝑇 ∥ + 1)2∥𝑣∥2)
≤ 2(∥𝑇 ∥ + 1)2∥(𝑢, 𝑣)∥2

H⊕H

for all 𝑢, 𝑣 ∈ H , which yields to ∥𝑆∥ ≤ 2(∥𝑇 ∥ + 1)2. Moreover, we have

𝑆−1𝜋𝐷(𝑔)𝑆 =

(
IdH −𝑇

0 IdH

) (
𝜋(𝑔) 𝐷(𝑔)

0 𝜋(𝑔)

) (
IdH 𝑇

0 IdH

)
=

(
𝜋(𝑔) 0

0 𝜋(𝑔)

)
= (𝜋 ⊕ 𝜋) (𝑔)

for any 𝑔 ∈ 𝐺, and as 𝜋 is unitary, 𝜋 ⊕ 𝜋 is unitary(15) as well, so 𝜋𝐷 is unitarisable.
(15)Indeed, fix 𝑔 ∈ 𝐺 and consider the operator 𝐵(𝑔) onH⊕H given by 𝐵(𝑔) (𝑢, 𝑣) ··= (𝜋(𝑔)∗𝑢,𝜋(𝑔)∗𝑣),

(𝑢, 𝑣) ∈ H ⊕ H . Then one has

⟨(𝑢, 𝑣), 𝐵(𝑔) (𝑧, 𝑡)⟩H⊕H = ⟨(𝑢, 𝑣), (𝜋(𝑔)∗𝑧,𝜋(𝑔)∗𝑡)⟩H⊕H
= ⟨𝑢,𝜋(𝑔)∗𝑧⟩ + ⟨𝑣,𝜋(𝑔)∗𝑡⟩
= ⟨𝜋(𝑔)𝑢, 𝑧⟩ + ⟨𝜋(𝑔)𝑣, 𝑡⟩
= ⟨(𝜋 ⊕ 𝜋) (𝑔) (𝑢, 𝑣), (𝑧, 𝑡)⟩H⊕H

for all (𝑢, 𝑣), (𝑧, 𝑡) ∈ H⊕H , whence (𝜋⊕𝜋) (𝑔)∗ = 𝐵(𝑔). As𝜋 is unitary, 𝐵(𝑔) equals in fact (𝜋⊕𝜋) (𝑔−1),
and thus (𝜋 ⊕ 𝜋) (𝑔)∗ = (𝜋 ⊕ 𝜋) (𝑔)−1 for all 𝑔 ∈ 𝐺.
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For the converse, assume 𝜋𝐷 is unitarisable. Thus there is 𝑆 ∈ B(H ⊕ H) so that
𝜏(𝑔) ··= 𝑆−1𝜋𝐷(𝑔)𝑆 is a unitary operator on H ⊕ H . In particular 𝜏(𝑔) = 𝜏(𝑔−1)∗ for
any 𝑔 ∈ 𝐺, and it follows that

(𝑆𝑆∗)𝜋𝐷(𝑔−1)∗ = (𝜋𝐷(𝑔−1)𝑆𝑆∗)∗

= (𝑆𝜏(𝑔−1)𝑆∗)∗

= 𝑆𝜏(𝑔−1)∗𝑆∗

= 𝑆𝜏(𝑔)𝑆∗

= 𝜋𝐷(𝑔) (𝑆𝑆∗)

for all 𝑔 ∈ 𝐺. Writing explicitly

𝑆𝑆∗ =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
we deduce from the above that 𝜋(𝑔)𝐴12+𝐷(𝑔)𝐴22 = 𝐴12𝜋(𝑔) and 𝜋(𝑔)𝐴22 = 𝐴22𝜋(𝑔),
for all 𝑔 ∈ 𝐺. Furthermore, note that as 𝑆𝑆∗ is positive and invertible, Corollary 1.23
provides 𝜀 > 0 so that

⟨𝑆𝑆∗(𝑢, 𝑣), (𝑢, 𝑣)⟩H⊕H ≥ 𝜀∥(𝑢, 𝑣)∥2
H⊕H

for all (𝑢, 𝑣) ∈ H ⊕ H . Expanding the inner product on the left-hand side, and re-
stricting to vectors of the form (0, 𝑣), 𝑣 ∈ H , one gets

⟨𝐴22𝑣, 𝑣⟩ ≥ 𝜀∥𝑣∥2

for any 𝑣 ∈ H . In particular, 𝐴22 is positive and invertible as well. We deduce that

𝐷(𝑔) = (𝐴12𝜋(𝑔) − 𝜋(𝑔)𝐴12)𝐴−1
22 = (𝐴12𝐴

−1
22 )𝜋(𝑔) − 𝜋(𝑔) (𝐴12𝐴

−1
22 )

for any 𝑔 ∈ 𝐺, proving that 𝐷 is inner, as 𝐴12𝐴
−1
22 ∈ B(H). This finishes the proof. □

Using this generic construction, we can now show the following.

Theorem 3.18. The group 𝐹∞ is not unitarisable.

Proof. Let 𝐺 ··= 𝐹∞ and let 𝑆 be a countable generating set of 𝐺. Consider the linear
operator 𝐴 on ℓ 2(𝐺) defined by

𝐴(𝛿𝑒) = 0, 𝐴(𝛿𝑠1...𝑠𝑘) = 𝛿𝑠1...𝑠𝑘−1

for every reduced word 𝑠1 . . . 𝑠𝑘−1𝑠𝑘 ∈ 𝐺 (and 𝑒 denotes the neutral element of𝐺 here).
As {𝛿𝑔 : 𝑔 ∈ 𝐺} is an orthonormal basis of ℓ 2(𝐺), this completely determines 𝐴.
Moreover, ∥𝐴(𝛿ℎ)∥2 ≤ ∥𝛿ℎ∥2 for any ℎ ∈ 𝐺, whence 𝐴 is bounded with ∥𝐴∥ ≤ 1. Now,
denote 𝜆 the regular representation of 𝐺, and define 𝐷 : 𝐺 −→ B(ℓ 2(𝐺)) by

𝐷(𝑔) ··= 𝐴𝜆(𝑔) − 𝜆(𝑔)𝐴
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for all 𝑔 ∈ 𝐺. We first prove that 𝐷 is a bounded derivation with respect to 𝜆.
For all 𝑔, ℎ ∈ 𝐺, one has

𝐷(𝑔)𝜆(ℎ) + 𝜆(𝑔)𝐷(ℎ) = (𝐴𝜆(𝑔) − 𝜆(𝑔)𝐴)𝜆(ℎ) + 𝜆(𝑔) (𝐴𝜆(ℎ) − 𝜆(ℎ)𝐴)
= 𝐴𝜆(𝑔ℎ) − 𝜆(𝑔ℎ)𝐴
= 𝐷(𝑔ℎ)

so 𝐷 is a derivation with respect to 𝜆. For the boundedness, note that

∥𝐷(𝑔) (𝛿ℎ)∥2 ≤ ∥𝐴∥∥𝜆(𝑔) (𝛿ℎ)∥2 + ∥𝜆(𝑔)∥∥𝐴(𝛿ℎ)∥2 ≤ 2

for any ℎ ∈ 𝐺. We deduce then ∥𝐷(𝑔)∥ ≤ 2 for any 𝑔 ∈ 𝐺. Points (i) and (ii) of
Proposition 3.17, which we may apply since 𝜆 is a unitary representation of 𝐺 (by
Example 3.2(iii)), ensure that 𝜆𝐷 is a uniformly bounded representation of 𝐺.

Towards a contradiction, suppose that 𝐷 is inner, and let 𝑇 ∈ B(ℓ 2(𝐺)) be so that

𝐷(𝑔) = 𝜆(𝑔)𝑇 − 𝑇𝜆(𝑔), 𝑔 ∈ 𝐺.
For 𝑔 ∈ 𝐺 write

𝑇 (𝛿𝑔) =
∑︁
ℎ∈𝐺

𝑡(ℎ, 𝑔)𝛿ℎ

and set 𝑝 : 𝐺 −→ ℂ, 𝑝(𝑔) ··= ⟨𝐷(𝑔)𝛿𝑒, 𝛿𝑒⟩. Let 𝑔, ℎ ∈ 𝐺 and observe that for any 𝑥 ∈ 𝐺,
we have

𝜆(𝑔) (𝛿ℎ) (𝑥) = 𝛿ℎ(𝑔−1𝑥) = 𝛿𝑔ℎ(𝑥)
whence the relation 𝜆(𝑔) (𝛿ℎ) = 𝛿𝑔ℎ for all 𝑔, ℎ ∈ 𝐺. We can thus compute

𝑝(𝑔) = ⟨𝜆(𝑔)𝑇 (𝛿𝑒) − 𝑇 (𝜆(𝑔) (𝛿𝑒)), 𝛿𝑒⟩

=

〈∑︁
ℎ∈𝐺

𝑡(ℎ, 𝑒)𝛿𝑔ℎ, 𝛿𝑒
〉
− ⟨𝑇 (𝛿𝑔), 𝛿𝑒⟩

= 𝑡(𝑔−1, 𝑒) − 𝑡(𝑒, 𝑔).

The two functions 𝑔 ↦−→ 𝑡(𝑔−1, 𝑒), 𝑔 ↦−→ 𝑡(𝑒, 𝑔) are in ℓ 2(𝐺), as∑︁
𝑔∈𝐺

𝑡(𝑒, 𝑔)2 = ∥𝑇 (𝛿𝑒)∥2 ≤ ∥𝑇 ∥2 < ∞

and ∑︁
𝑔∈𝐺

𝑡(𝑔−1, 𝑒)2 = ∥𝑇∗(𝛿𝑒)∥2 ≤ ∥𝑇∗∥2 = ∥𝑇 ∥2 < ∞.

Thus 𝑝 ∈ ℓ 2(𝐺) as well. On the other hand, if 𝑔 = 𝑠1 . . . 𝑠𝑘 ≠ 𝑒 one has

𝑝(𝑔) = ⟨𝐴(𝛿𝑔), 𝛿𝑒⟩ = ⟨𝛿𝑠1...𝑠𝑘−1 , 𝛿𝑒⟩ =
{

1 if 𝑠1 . . . 𝑠𝑘−1 = 𝑒

0 otherwise
=

{
1 if 𝑔 ∈ 𝑆
0 otherwise

= 1𝑆 (𝑔)

where the first equality follows from the definition of 𝑝 and the fact that 𝐴(𝛿𝑒) = 0.
This shows the equality 𝑝 = 1𝑆, and thus 1𝑆 ∈ ℓ 2(𝐺), which implies |𝑆| < ∞. This is
the desired contradiction, and hence 𝐷 is not inner. Hence 𝜆𝐷 is not unitarisable, and
thus 𝐺 = 𝐹∞ is not unitarisable either. □

101



Master thesis 3.2 Non-unitarisability of non-abelian free groups

Therefore, a way to prove the non-unitarisability of a group is to show that this
group contains 𝐹∞ as a subgroup.

To detect non-abelian free subgroups in a group, the following lemma is crucial. It
is often referred to as the Ping-Pong lemma.

Lemma 3.19. Let 𝐺 be a group, generated by a subset 𝑆 with |𝑆| ≥ 2. Suppose
that 𝐺 acts on a set 𝑋 and that there exists a collection (𝐴𝑠)𝑠∈𝑆 of non-empty
disjoint subsets of 𝑋 so that

𝑠𝑘 · 𝐴𝑡 ⊂ 𝐴𝑠

for all 𝑠 ≠ 𝑡 ∈ 𝑆 and 𝑘 ∈ ℤ \ {0}. Then 𝐺 is a free group on 𝑆.

Proof. Let 𝑔 ∈ 𝐺 and write it as a non-trivial reduced word

𝑔 = 𝑠
𝑘1
1 . . . 𝑠

𝑘𝑛
𝑛

with 𝑛 ≥ 1, 𝑠1, . . . , 𝑠𝑛 ∈ 𝑆 and 𝑘1, . . . , 𝑘𝑛 ∈ ℤ \ {0}. This is possible because 𝑆
generates 𝐺. It is enough to prove that 𝑔 ≠ 𝑒𝐺 (see [4, corollary 1.8]). We distinguish
three cases:

(i) |𝑆| ≥ 3.

(ii) |𝑆| = 2 and 𝑠1 = 𝑠𝑛.

(iii) |𝑆| = 2 and 𝑠1 ≠ 𝑠𝑛.

If we are either in case (i) or (ii), we can pick 𝑡 ∈ 𝑆 so that 𝑡 ≠ 𝑠1 and 𝑡 ≠ 𝑠𝑛. It thus
follows from the assumption applied 𝑛 times that

𝑔 · 𝐴𝑡 = (𝑠𝑘1
1 . . . 𝑠

𝑘𝑛
𝑛 ) · 𝐴𝑡

= (𝑠𝑘1
1 . . . 𝑠

𝑘𝑛−1
𝑛−1 ) · (𝑠

𝑘𝑛
𝑛 · 𝐴𝑡)

⊂ (𝑠𝑘1
1 . . . 𝑠

𝑘𝑛−1
𝑛−1 ) · 𝐴𝑠𝑛

⊂ . . .
⊂ 𝑠𝑘1

1 · 𝐴𝑠2
⊂ 𝐴𝑠1 .

By hypothesis, we have 𝐴𝑠1 ∩ 𝐴𝑡 = ∅ whence 𝑔 ≠ 𝑒𝐺. If we are rather in case (iii) we
conjugate 𝑔 by 𝑠𝑘1

1 and
𝑠
𝑘1
1 𝑔𝑠

−𝑘1
1 = 𝑠

2𝑘1
1 𝑠

𝑘2
2 . . . 𝑠

𝑘𝑛
𝑛 𝑠

−𝑘1
1

expresses 𝑠𝑘1
1 𝑔𝑠

−𝑘1
1 as a non-trivial reduced word. This word satisfies assumptions of

case (ii) we just handled, so we deduce 𝑠𝑘1
1 𝑔𝑠

−𝑘1
1 ≠ 𝑒𝐺, and it follows that 𝑔 ≠ 𝑒𝐺. This

completes the proof. □
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A well-known application of this result is the following.

Example 3.20. Consider the usual action of SL2(ℤ) on ℝ2, and the two matrices

𝑆1 ··=
(
1 2
0 1

)
, 𝑆2 ··=

(
1 0
2 1

)
. Moreover, let

𝐴𝑆1
··=

{ (
𝑥

𝑦

)
∈ ℝ2 : |𝑥| > |𝑦|

}
, 𝐴𝑆2

··=
{ (
𝑥

𝑦

)
∈ ℝ2 : |𝑥| < |𝑦|

}
.

If
(
𝑥

𝑦

)
∈ 𝐴𝑆2, then

|𝑥 + 2𝑦| ≥ | |2𝑦| − |𝑥| | ≥ |2𝑦| − |𝑥| > 2|𝑦| − |𝑦| = |𝑦|

by the second triangle inequality, whence 𝑆1

(
𝑥

𝑦

)
∈ 𝐴𝑆1. Likewise, 𝑆2𝐴𝑆1 ⊂ 𝐴𝑆2 .

Clearly 𝐴𝑆1 and 𝐴𝑆2 are non-empty and disjoint, so we may apply Lemma 3.19 to obtain
that𝐺 = ⟨𝑆1, 𝑆2⟩ is a free group in SL2(ℤ), namely a copy of the non-abelian free group
on two generators 𝐹2.

The Ping-Pong lemma allows also to prove the following.

Corollary 3.21. Let 𝐹 be a free group of rank 2, and 2 ≤ 𝑛 ≤ ∞. Then 𝐹 contains
a free subgroup of rank 𝑛.

Proof. Denote {𝑎, 𝑏} a free basis for 𝐹. Given 2 ≤ 𝑛 ≤ ∞, let 𝐼 = {0, . . . , 𝑛 − 1} (resp.
𝐼 = ℕ) and let 𝐺 be the subgroup of 𝐹 generated by 𝑆 ··= {𝑠𝑖 : 𝑖 ∈ 𝐼} where

𝑠𝑖 ··= 𝑎𝑖𝑏𝑎−𝑖, 𝑖 ∈ 𝐼.

Consider the natural action of 𝐺 on 𝐹 by left multiplication, and for each 𝑖 ∈ 𝐼 denote
𝐴𝑠𝑖 ⊂ 𝐹 the set of elements of 𝐹 whose reduced form starts as 𝑎𝑖𝑏ℎ, for some ℎ ∈ ℤ\{0}.
This definition imposes 𝐴𝑠𝑖 ∩ 𝐴𝑠 𝑗 = ∅ for 𝑖 ≠ 𝑗 ∈ 𝐼, and moreover, if 𝑘 ∈ ℤ \ {0}, every
element in 𝑠𝑘

𝑖
· 𝐴𝑠 𝑗 has a reduced form starting as 𝑎𝑖𝑏𝑘𝑎−𝑖𝑎 𝑗𝑏ℎ = 𝑎𝑖𝑏𝑘𝑎 𝑗−𝑖𝑏ℎ for some

ℎ ∈ ℤ\ {0}. This means that 𝑠𝑘
𝑖
· 𝐴𝑠 𝑗 ⊂ 𝐴𝑠𝑖 , for all distinct pairs 𝑖, 𝑗 ∈ 𝐼. All hypotheses

of Lemma 3.19 are fulfilled, and thus 𝐺 is a free group of rank |𝐼 | in 𝐹. □

These results combined with the non-unitarisability of 𝐹∞ give us new examples of
non-unitarisable groups.

Corollary 3.22. Any group containing 𝐹2 as a subgroup is not unitarisable. In
particular, 𝐹𝑑 is not unitarisable for any 2 ≤ 𝑑 ≤ ∞, as well as SL2(ℤ), SL2(ℝ),
GL2(ℤ), GL2(ℝ).
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Proof. As 𝐹2 contains 𝐹∞ as a subgroup, and the latter is non-unitarisable by Theorem
3.18, 𝐹2 cannot be unitarisable either by (the contrapositive of) Proposition 3.12. This
implies the non-unitarisability of any group containing 𝐹2, in particular 𝐹𝑑 for any
𝑑 ≥ 2. We derive the non-unitarisability of SL2(ℤ), SL2(ℝ), GL2(ℤ), GL2(ℝ) from
Example 3.20. □

We end this introduction to unitarisability by an overview of other known results,
established recently, and open problems on the theme.

To begin, let us mention another stability property: virtual(16) unitarisability im-
plies unitarisability [29, corollary 8.21]. Moreover, extensions (in the sense of Defini-
tion B.12) of unitarisable groups by amenable groups give rise to unitarisable groups
[30, theorem 4.19]. On the other hand, it is not known whether extensions of unitaris-
able groups by unitarisable groups are still unitarisable. Also, it is unknown whether
the directed union of unitarisable groups is unitarisable, but in contrast there is in
fact a version of Corollary B.18 for unitarisability [26, corollary 0.11]:

Theorem. A group 𝐺 is unitarisable if and only if all its countable subgroups are
unitarisable.

In the opposite direction, until recently the only known examples of non-unitarisable
groups contained non-abelian free groups. In 2008, Nicolas Monod and Inessa Epstein
proved the existence of non-unitarisable torsion groups [16, corollary 1.6], and estab-
lished several connections with the first 𝐿2−Betti number of a group and the cost of a
group. In 2009, Nicolas Monod and Narutaka Ozawa obtained in [23, theorem 1] the
following major result:

Theorem. Let 𝐺 be a group. The following are equivalent.

(i) 𝐺 is amenable.

(ii) 𝐴 ≀ 𝐺(17) is unitarisable for all abelian groups 𝐴.

(iii) 𝐴 ≀ 𝐺 is unitarisable for some infinite abelian group 𝐴.

They derived from this theorem the non-unitarisability of many Burnside groups
[23, theorem 2].

(16)A group𝐺 is called virtually unitarisable if it contains a unitarisable subgroup𝐻 with [𝐺 : 𝐻] < ∞.
More generally, if 𝑃 is a group-theoretic property, we say that 𝐺 is virtually−𝑃 if it contains a finite
index subgroup that has property 𝑃.

(17)The notation 𝐴 ≀ 𝐺 stands for the wreath product of 𝐴 and 𝐺, defined as the semi-direct product(⊕
𝐺

𝐴
)
⋊ 𝐺

where 𝐺 acts on the direct sum via 𝑔 · (𝑎ℎ)ℎ∈𝐺 ··= (𝑎𝑔−1ℎ)ℎ∈𝐺, 𝑔 ∈ 𝐺, (𝑎ℎ)ℎ∈𝐺 ∈
⊕
𝐺

𝐴.
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3.3 Fixed points and smallest unitarisers

In this part, we establish a connection between unitarisable representations of a
group 𝐺 and fixed points for a natural action of the group on the space of positive
invertible operators on a Hilbert space. Using the weak operator topology on the latter,
we prove that any unitarisable representation of a group can be unitarised with an
operator having minimal size.

The starting point is the following observation: if 𝐺 is a group and 𝜋 : 𝐺 −→
Aut(H) is a representation of 𝐺 on a Hilbert space H , we can use the natural ac-
tion of Aut(H) on P(H) to define an action of 𝐺 on P(H), letting

𝜃𝜋 : 𝐺 × P(H) −→ P(H), 𝜃𝜋 (𝑔, 𝑃) ··= 𝜋(𝑔)𝑃𝜋(𝑔)∗.

As proved in Chapter 2, this is a well-defined map, and as 𝜋 is a group homomor-
phism, this is a group action. Indeed, 𝜃𝜋 (𝑒𝐺, 𝑃) = 𝜋(𝑒𝐺)𝑃𝜋(𝑒𝐺)∗ = IdH𝑃Id∗

H = 𝑃 for
any 𝑃 ∈ P(H), and

𝜃𝜋 (𝑔ℎ, 𝑃) = 𝜋(𝑔ℎ)𝑃𝜋(𝑔ℎ)∗

= 𝜋(𝑔)𝜋(ℎ)𝑃𝜋(ℎ)∗𝜋(𝑔)∗

= 𝜋(𝑔)𝜃𝜋 (ℎ, 𝑃)𝜋(𝑔)∗

= 𝜃𝜋 (𝑔, 𝜃𝜋 (ℎ, 𝑃))

for any 𝑔, ℎ ∈ 𝐺 and 𝑃 ∈ P(H). In particular, since the action of Aut(H) is isometric
(Proposition 2.6) and respects the geodesics we defined (Lemma 2.8), the same is true
for 𝜃𝜋.

In the sequel, if 𝑔 ∈ 𝐺 and 𝑃 ∈ P(H) we also write 𝑔 · 𝑃 for 𝜃𝜋 (𝑔, 𝑃) ∈ P(H).
Our first lemma shows that unitarisers for 𝜋 give rise to fixed points for this action,

and vice-versa.

Lemma 3.23. If 𝑆 ∈ 𝑈 (𝜋), then 𝑆𝑆∗ is a fixed point of 𝜃𝜋. Conversely, if 𝑇 is a
fixed point of 𝜃𝜋, then 𝑇1/2 ∈ 𝑈 (𝜋).

Proof. First, suppose that 𝑆 ∈ 𝑈 (𝜋). We already observed that 𝑆𝑆∗ is positive in
Example 1.8, and its invertibility follows from that of 𝑆. Thus 𝑆𝑆∗ ∈ P(H). Now, as
𝑆 ∈ 𝑈 (𝜋), 𝑆−1𝜋(𝑔)𝑆 is unitary for all 𝑔 ∈ 𝐺, and in particular

𝑆−1𝜋(𝑔)𝑆(𝑆−1𝜋(𝑔)𝑆)∗ = IdH

for all 𝑔 ∈ 𝐺. This implies that 𝑆−1𝜋(𝑔)𝑆𝑆∗𝜋(𝑔)∗(𝑆−1)∗ = IdH , and multiplying from
the left by 𝑆 and from the right by 𝑆∗, we get

𝜋(𝑔)𝑆𝑆∗𝜋(𝑔)∗ = 𝑆𝑆∗

for all 𝑔 ∈ 𝐺, so 𝑆𝑆∗ is a fixed point of 𝜃𝜋.

105



Master thesis 3.3 Fixed points and smallest unitarisers

Conversely, let 𝑇 be a fixed point of 𝜃𝜋, i.e.

𝜋(𝑔)𝑇𝜋(𝑔)∗ = 𝑇

for all 𝑔 ∈ 𝐺. Writing 𝑇 = 𝑇1/2𝑇1/2, one has 𝑇−1/2𝜋(𝑔)𝑇1/2𝑇1/2𝜋(𝑔)∗𝑇−1/2 = IdH for
any 𝑔 ∈ 𝐺, whence

(𝑇1/2)−1𝜋(𝑔)𝑇1/2 ((𝑇1/2)−1𝜋(𝑔)𝑇1/2)∗ = IdH

for any 𝑔 ∈ 𝐺. As (𝑇1/2)−1𝜋(𝑔)𝑇1/2 is invertible, we deduce that it is in fact unitary
for all 𝑔 ∈ 𝐺, and thus 𝑇1/2 ∈ 𝑈 (𝜋). This concludes the proof. □

A direct consequence of this lemma is the following, about the properties of uni-
tarisers.

Corollary 3.24. If 𝜋 is unitarisable, then 𝜋 has a positive invertible unitariser.

Proof. Since 𝜋 is unitarisable, we can pick 𝑆 ∈ 𝑈 (𝜋). Then 𝑆𝑆∗ is a fixed point of 𝜃𝜋,
and thus

√
𝑆𝑆∗ ∈ 𝑈 (𝜋). As

√
𝑆𝑆∗ is positive and invertible by Theorem 1.42, the claim

follows. □

The goal of the next result is to show we can always choose a unitariser with min-
imal size.

Proposition 3.25. Let 𝜋 be a unitarisable representation of a group 𝐺. Then
there exists 𝑆𝜋 ∈ 𝑈 (𝜋) so that

𝑠(𝑆𝜋) = inf
𝑆∈𝑈 (𝜋)

𝑠(𝑆).

Moreover, this unitariser can be chosen in P(H).

Proof. By Proposition 3.5(iv) and (the proof of) Corollary 3.24, given 𝑆 ∈ 𝑈 (𝜋), the
operations

𝑆 −→ 𝑆𝑆∗ −→
√
𝑆𝑆∗

produce a positive unitariser of 𝜋 with same size as 𝑆. Hence, without loss of gener-
ality, we can restrict our search to positive unitarisers.

Next, by Lemma 3.23 and Proposition 3.5(iv), we have a size-squaring bijection

𝑈 (𝜋) ∩ P(H) −→ P(H)𝐺

𝑆 ↦−→ 𝑆2
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so it is enough to find𝑇𝜋 ∈ P(H)𝐺 with minimal size. Since P(H)𝐺 is closed(18) under
multiplication by strictly positive scalars, and that 𝑠(𝜆𝑆) = 𝑠(𝑆) for all 𝜆 ∈ ℂ \ {0} by
Proposition 3.5(ii), it suffices to find 𝑇𝜋 in

P(H)𝐺1 ··= P(H)𝐺 ∩ {𝐴 ∈ B(H) : ∥𝐴∥ = 1}.

We are thus left to prove there is 𝑇𝜋 ∈ P(H)𝐺1 so that

𝑠(𝑇𝜋) = inf
𝑇∈P(H)𝐺1

𝑠(𝑇).

Additionally, observe that if ∥𝑇 ∥ = 1, 𝑠(𝑇) = ∥𝑇−1∥ = 1
min

𝜆∈𝜎(𝑇)
𝜆

, so in order to exhibit

𝑇𝜋 realizing the infimum above, we must maximise the quantities min
𝜆∈𝜎(𝑇)

𝜆 when 𝑇

runs over P(H)𝐺1 , i.e. exhibit a 𝑇𝜋 ∈ P(H)𝐺1 so that

min
𝜆∈𝜎(𝑇𝜋)

𝜆 = sup
𝑇∈P(H)𝐺1

(
min

𝜆∈𝜎(𝑇)
𝜆
)
. (8)

One last reduction can be made observing that min
𝜆∈𝜎(𝑇)

𝜆 = 1 − ∥IdH − 𝑇 ∥ for ∥𝑇 ∥ = 1.

Indeed, if ∥𝑇 ∥ = 1, one has

1 − ∥IdH − 𝑇 ∥ = 1 − max
𝜆∈𝜎(IdH−𝑇)

𝜆

= 1 − max
𝜆∈𝜎(𝑇)

(1 − 𝜆)

= 1 − (1 − min
𝜆∈𝜎(𝑇)

𝜆)

= min
𝜆∈𝜎(𝑇)

𝜆

using Lemma 1.16 in the second equality. With this observation, finding 𝑇𝜋 ∈ P(H)𝐺1
verifying (8) is the same as finding 𝑇𝜋 ∈ P(H)𝐺1 so that ∥IdH − 𝑇𝜋∥ is minimal and
realizes the distance between IdH and P(H)𝐺1 . Call then

𝛿 ··= inf
𝑇∈P(H)𝐺1

∥IdH − 𝑇 ∥

this distance, and note that 𝛿 < 1 as

1 − ∥IdH − 𝑇 ∥ = min
𝜆∈𝜎(𝑇)

𝜆 > 0

for any 𝑇 ∈ P(H)𝐺1 .
(18)Indeed, if 𝑇 ∈ P(H)𝐺 and 𝜆 > 0, then 𝜆𝑇 ∈ P(H) by Lemma 2.1, and

𝜃𝜋 (𝑔,𝜆𝑇) = 𝜋(𝑔) (𝜆𝑇)𝜋(𝑔)∗ = 𝜆(𝜋(𝑔)𝑇𝜋(𝑔)∗) = 𝜆𝑇

for all 𝑔 ∈ 𝐺. Thus 𝜆𝑇 ∈ P(H)𝐺.
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Pick a sequence (𝑇𝑛)𝑛∈ℕ ⊂ P(H)𝐺1 so that ∥IdH − 𝑇𝑛∥ −→ 𝛿 as 𝑛 → ∞. Now,
P(H)𝐺1 ⊂ {𝐴 ∈ B(H) : ∥𝐴∥ ≤ 1} and this set is compact for the weak operator
topology by Theorem 1.52. As this topology is metrisable on bounded parts of B(H)
(Theorem 1.51), {𝐴 ∈ B(H) : ∥𝐴∥ ≤ 1} is in fact sequentially compact by Theorem
A.37. We thus extract from (𝑇𝑛)𝑛∈ℕ a convergent subsequence (𝑇𝜑(𝑛))𝑛∈ℕ and we denote
𝑇𝜋 its limit. We now check that 𝑇𝜋 is in P(H)𝐺1 and that 𝛿 = ∥IdH − 𝑇𝜋∥.

First of all, as {𝐴 ∈ B(H) : ∥𝐴∥ ≤ 1} is compact for 𝜏𝑤, which is a Hausdorff
topology (Lemma 1.50), Proposition A.32 ensures that {𝐴 ∈ B(H) : ∥𝐴∥ ≤ 1} is also
closed for 𝜏𝑤, so we must have 𝑇𝜋 ∈ {𝐴 ∈ B(H) : ∥𝐴∥ ≤ 1}, and thus ∥𝑇𝜋∥ ≤ 1.

Next, by definition of the weak operator topology, we have

⟨𝑇𝜋𝑢, 𝑢⟩ = lim
𝑛→∞

⟨𝑇𝜑(𝑛)𝑢, 𝑢⟩

for all 𝑢 ∈ H . As 𝑇𝜑(𝑛) ∈ P(H) for all 𝑛 ∈ ℕ, (⟨𝑇𝜑(𝑛)𝑢, 𝑢⟩)𝑛∈ℕ is a sequence of positive
real numbers, so its limit is a positive number. Hence 𝑇𝜋 is positive.

Additionally, since 𝑇𝜋 − IdH is self-adjoint, we have

∥𝑇𝜋 − IdH ∥ = sup
∥𝑢∥=1

|⟨(𝑇𝜋 − IdH )𝑢, 𝑢⟩|

= sup
∥𝑢∥=1

| lim
𝑛→∞

⟨(𝑇𝜑(𝑛) − IdH )𝑢, 𝑢⟩|

= sup
∥𝑢∥=1

lim
𝑛→∞

|⟨(𝑇𝜑(𝑛) − IdH )𝑢, 𝑢⟩|

≤ sup
∥𝑢∥=1

lim
𝑛→∞

∥𝑇𝜑(𝑛) − IdH ∥

= sup
∥𝑢∥=1

𝛿

= 𝛿

where the first equality follows from [13, theorem 1.12] (or [6, theorem 2.2.13]), and
the upper bound follows from Cauchy-Schwarz inequality. In particular, this implies
that 𝜎(𝑇𝜋 − IdH ) ⊂ [−𝛿, 𝛿], and Lemma 1.16 in turn implies

𝜎(𝑇𝜋) ⊂ [1 − 𝛿, 𝛿 + 1] ⊂ (0, 𝛿 + 1].

Thus 𝑇𝜋 is invertible, so 𝑇𝜋 ∈ P(H) and in fact, as we already know ∥𝑇𝜋∥ ≤ 1, we
have 𝜎(𝑇𝜋) ⊂ [1 − 𝛿, 1].

Now let 𝑢 ∈ H and 𝑔 ∈ 𝐺. We compute that

⟨(𝑔 · 𝑇𝜋)𝑢, 𝑢⟩ = ⟨𝜋(𝑔)𝑇𝜋𝜋(𝑔)∗𝑢, 𝑢⟩
= ⟨𝑇𝜋𝜋(𝑔)∗𝑢,𝜋(𝑔)∗𝑢⟩
= lim
𝑛→∞

⟨𝑇𝜑(𝑛)𝜋(𝑔)∗𝑢,𝜋(𝑔)∗𝑢⟩

= lim
𝑛→∞

⟨(𝑔 · 𝑇𝜑(𝑛))𝑢, 𝑢⟩

= lim
𝑛→∞

⟨𝑇𝜑(𝑛)𝑢, 𝑢⟩
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= ⟨𝑇𝜋𝑢, 𝑢⟩

using the fact that 𝑇𝜑(𝑛) is a fixed point for 𝐺↷ P(H) and the definition of the weak
operator topology. This shows that

⟨(𝑔 · 𝑇𝜋 − 𝑇𝜋)𝑢, 𝑢⟩ = 0

for all 𝑢 ∈ H , and Lemma 1.3 ensures then that 𝑔 · 𝑇𝜋 = 𝑇𝜋. As this holds for any
𝑔 ∈ 𝐺, we conclude that 𝑇𝜋 is a fixed point for 𝐺↷ P(H).

To finish, assume towards a contradiction that 𝑏 ··= ∥𝑇𝜋∥ < 1. Letting 𝑎 ··=
min

𝜆∈𝜎(𝑇𝜋)
𝜎(𝑇𝜋), we have then

𝜎(𝑇𝜋) ⊂ [𝑎, 𝑏], 0 < 1 − 𝛿 ≤ 𝑎 < 𝑏 < 1.

The operator 𝑇 ··= 1
𝑏
𝑇𝜋 is therefore positive, invertible, fixed by 𝜃𝜋, and of norm 1. In

other words, it lies in P(H)𝐺1 , and thus ∥IdH − 𝑇 ∥ ≥ 𝛿. On the other hand, 𝜎(𝑇) ⊂
[ 𝑎
𝑏
, 1], which implies

∥IdH − 𝑇 ∥ ≤ 1 − 𝑎

𝑏
< 1 − 𝑎 = ∥IdH − 𝑇𝜋∥ ≤ 𝛿

whence ∥IdH −𝑇 ∥ < 𝛿. This contradicts ∥IdH −𝑇 ∥ ≥ 𝛿, so we must have 𝑏 ≥ 1. Hence
∥𝑇𝜋∥ = 1. We deduce now that 𝑇𝜋 ∈ P(H)𝐺1 , and in particular

∥IdH − 𝑇𝜋∥ ≥ 𝛿.

As we already proved that ∥IdH − 𝑇𝜋∥ ≤ 𝛿, we conclude that ∥IdH − 𝑇𝜋∥ = 𝛿, so
𝑇𝜋 indeed realizes the distance between P(H)𝐺1 and IdH . As explained above, this
concludes the proof. □

A key idea towards Pisier’s result is that, for unitarisable groups, we can always
have a good control on sizes of representations, and we will show in the proof that if
a representation has large size, we can always "deform" it in a continuous way to get
representations with smaller sizes. The next definition introduces this deformation.

Definition 3.26. Let 𝜋 be a unitarisable representation of a group 𝐺, with 𝑆 ∈
𝑈 (𝜋) a smallest positive unitariser. For 𝑡 ∈ [0, 1], let

𝜋𝑡 : 𝐺 −→ Aut(H)
𝑔 ↦−→ 𝑆−𝑡𝜋(𝑔)𝑆𝑡.

For 𝑡 ∈ [0, 1], 𝜋𝑡 is a representation of 𝐺, as

𝜋𝑡 (𝑔ℎ) = 𝑆−𝑡𝜋(𝑔ℎ)𝑆𝑡

= 𝑆−𝑡𝜋(𝑔)𝑆𝑡𝑆−𝑡𝜋(ℎ)𝑆𝑡

= 𝜋𝑡 (𝑔)𝜋𝑡 (ℎ)
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for all 𝑔, ℎ ∈ 𝐺.
Knowing that 𝑆 is a smallest unitariser for 𝜋 allows one to exhibit a smallest uni-

tariser for 𝜋𝑡.

Lemma 3.27. Let 𝜋 be a unitarisable representation of a group 𝐺, and let 𝑆 ∈
𝑈 (𝜋) be a smallest positive unitariser.
Then for any 𝑡 ∈ [0, 1], 𝑆1−𝑡 is a smallest unitariser for 𝜋𝑡.

Proof. Fix 𝑡 ∈ [0, 1]. For 𝑔 ∈ 𝐺, we have

(𝑆1−𝑡)−1𝜋𝑡 (𝑔)𝑆1−𝑡 = 𝑆𝑡−1𝑆−𝑡𝜋(𝑔)𝑆𝑡𝑆1−𝑡 = 𝑆−1𝜋(𝑔)𝑆 ∈ U(H)

as 𝑆 unitarises 𝜋. Hence 𝑆1−𝑡 ∈ 𝑈 (𝜋𝑡). Up to normalizing 𝑆, and invoking Proposition
3.5(ii) and the fact that 𝑈 (𝜋) is closed under scaling, we may assume that ∥𝑆∥ = 1.
Towards a contradiction, suppose there exists 𝑄 ∈ 𝑈 (𝜋𝑡) with

𝑠(𝑄) < 𝑠(𝑆1−𝑡).

As for 𝑆, we may assume that ∥𝑄∥ = 1. Since ∥𝑆∥ = 1, ∥𝑆1−𝑡∥ = 1 using Theorem
1.30(i), so the assumption 𝑠(𝑄) < 𝑠(𝑆1−𝑡) reads as

∥𝑄−1∥ < ∥𝑆𝑡−1∥.

Now, we claim that 𝑆𝑡𝑄 ∈ 𝑈 (𝜋). Indeed, it suffices to write

(𝑆𝑡𝑄)−1𝜋(𝑔)𝑆𝑡𝑄 = 𝑄−1𝑆−𝑡𝜋(𝑔)𝑆𝑡𝑄 = 𝑄−1𝜋𝑡 (𝑔)𝑄

for any 𝑔 ∈ 𝐺, and by assumption 𝑄 unitarises 𝜋𝑡, so 𝑄−1𝜋𝑡 (𝑔)𝑄 is unitary for any
𝑔 ∈ 𝐺. Now, looking at the size of 𝑆𝑡𝑄 provides

𝑠(𝑆𝑡𝑄) = ∥𝑆𝑡𝑄∥∥(𝑆𝑡𝑄)−1∥ ≤ ∥𝑆𝑡∥∥𝑄∥∥𝑄−1∥∥𝑆−𝑡∥ < ∥𝑆𝑡∥∥𝑆𝑡−1∥∥𝑆−𝑡∥.

Additionally, using once again Theorem 1.30, one gets ∥𝑆𝑡∥ = 1, as well as

∥𝑆𝑡−1∥ = ∥(𝑆−1)1−𝑡∥ = ∥𝑆−1∥1−𝑡 = 𝑠(𝑆)1−𝑡

and ∥𝑆−𝑡∥ = ∥(𝑆−1)𝑡∥ = ∥𝑆−1∥𝑡 = 𝑠(𝑆)𝑡. Putting this in our previous estimate, it
follows that

𝑠(𝑆𝑡𝑄) < ∥𝑆𝑡∥∥𝑆𝑡−1∥∥𝑆−𝑡∥ = 𝑠(𝑆)1−𝑡𝑠(𝑆)𝑡 = 𝑠(𝑆).
This contradicts the fact that 𝑆 is a smallest unitariser for 𝜋. We conclude that such
a 𝑄 cannot exist, and thus 𝑆1−𝑡 is a smallest unitariser for 𝜋𝑡. We are done. □

Actually, the proof also provides a formula for the size of the smallest unitariser
we just found.
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Corollary 3.28. Let 𝜋 be a unitarisable representation of 𝐺, and 𝑆 ∈ 𝑈 (𝜋) be
a smallest positive unitariser for 𝜋. Then

𝑠(𝑆1−𝑡) = 𝑠(𝑆)1−𝑡.

Proof. Using once again Theorem 1.30(i), we compute

𝑠(𝑆1−𝑡) = ∥𝑆1−𝑡∥∥(𝑆−1)1−𝑡∥ = ∥𝑆∥1−𝑡∥𝑆−1∥1−𝑡 = 𝑠(𝑆)1−𝑡

as announced. □

3.4 Metric properties of uniformly bounded representations

This part is devoted to the interplay between uniformly bounded representations
of a group and the metric structure on P(H) we defined in Chapter 2.

We start by recording the following.

Lemma 3.29. Let 𝜋 be a representation of a group 𝐺, and let 𝜃𝜋 be the induced
action of 𝐺 on P(H). Then the set P(H)𝐺 is metrically convex.

Proof. Let 𝐴, 𝐵 ∈ P(H)𝐺. Since the action of 𝐺 preserves the geodesic between 𝐴 and
𝐵, we have

𝑔 · 𝜎(𝐴, 𝐵, 𝑡) = 𝜎(𝑔 · 𝐴, 𝑔 · 𝐵, 𝑡) = 𝜎(𝐴, 𝐵, 𝑡)
for any 𝑔 ∈ 𝐺 and 𝑡 ∈ [0, 1]. Thus 𝜎(𝐴, 𝐵, 𝑡) ∈ P(H)𝐺. □

Furthermore, if 𝜋 is uniformly bounded we have |𝜋 |2 ≥ ∥𝜋(𝑔)∥2 = ∥𝜋(𝑔)𝜋(𝑔)∗∥
and likewise |𝜋 |2 ≥ ∥(𝜋(𝑔)𝜋(𝑔)∗)−1∥, for any 𝑔 ∈ 𝐺. Thus the orbit of IdH ∈ P(H)
under 𝜃𝜋 : 𝐺 × P(H) −→ P(H) is bounded, as

d(𝜃𝜋 (𝑔, IdH ), IdH ) = ∥ ln(𝜋(𝑔)𝜋(𝑔)∗)∥
= max(ln(∥𝜋(𝑔)𝜋(𝑔)∗∥), ln(∥(𝜋(𝑔)𝜋(𝑔)∗)−1∥))
≤ ln( |𝜋 |2)

for all 𝑔 ∈ 𝐺, using Lemma 2.5. It therefore makes sense to look at the diameter of
the orbit of IdH .

Definition 3.30. Let 𝜋 be a uniformly bounded representation of a group 𝐺. Its
diameter is the diameter of the orbit of IdH under the action 𝜃𝜋, namely

diam(𝜋) ··= sup
𝑔,ℎ∈𝐺

d(𝑔 · IdH , ℎ · IdH ).
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Since 𝐺 acts by isometries on P(H), this can also be written as

sup
𝑔∈𝐺

d(IdH , 𝑔 · IdH ).

This observation allows us to easily compute the diameter of a representation in term
of its size.

Proposition 3.31. Let 𝜋 be a uniformly bounded representation of a group 𝐺.
Then one has

diam(𝜋) = 2 ln( |𝜋 |).

Proof. Using Definition 3.30 and Lemma 2.5, we have

diam(𝜋) = sup
𝑔∈𝐺

d(IdH , 𝑔 · IdH )

= sup
𝑔∈𝐺

∥ ln(𝜋(𝑔)𝜋(𝑔)∗)∥

= sup
𝑔∈𝐺

max(ln(∥𝜋(𝑔)𝜋(𝑔)∗∥), ln(∥(𝜋(𝑔)𝜋(𝑔)∗)−1∥))

= sup
𝑔∈𝐺

max(ln(∥𝜋(𝑔)∥2), ln(∥𝜋(𝑔)−1∥2))

= 2 sup
𝑔∈𝐺

max(ln(∥𝜋(𝑔)∥), ln(∥𝜋(𝑔−1)∥))

= 2 sup
𝑔∈𝐺

ln(∥𝜋(𝑔)∥)

= 2 ln(sup
𝑔∈𝐺

∥𝜋(𝑔)∥)

= 2 ln( |𝜋 |)

as we wanted. The proof is complete. □

Beyond its straightforward proof, this result really relates size of a representation
of 𝐺 with the way on which the orbit of IdH sits inside P(H). In words, better is the
control on |𝜋 |, closer to IdH is its orbit.

With this explicit formula for the diameter, we can then establish an analog to
Corollary 3.28 for the size of representations.

Proposition 3.32. Let 𝜋 be a unitarisable representation of a group 𝐺, with a
smallest positive unitariser 𝑆 ∈ 𝑈 (𝜋). Then

|𝜋𝑡 | ≤ |𝜋 |1−𝑡

for any 𝑡 ∈ [0, 1].
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Proof. Let 𝑡 ∈ [0, 1]. Equivalently, we establish 2 ln( |𝜋𝑡 |) ≤ 2 ln( |𝜋 |1−𝑡). Appealing
Proposition 3.31, we compute

2 ln( |𝜋𝑡 |) = diam(𝜋𝑡) = sup
𝑔∈𝐺

d(IdH ,𝜋𝑡 (𝑔)𝜋𝑡 (𝑔)∗)

= sup
𝑔∈𝐺

d(IdH , 𝑆
−𝑡𝜋(𝑔)𝑆2𝑡𝜋(𝑔)∗𝑆−𝑡)

= sup
𝑔∈𝐺

d(𝑆2𝑡,𝜋(𝑔)𝑆2𝑡𝜋(𝑔)∗)

= sup
𝑔∈𝐺

d(𝑆2𝑡, 𝑔 · 𝑆2𝑡)

= sup
𝑔∈𝐺

d(𝜎(IdH , 𝑆
2, 𝑡), 𝑔 · 𝜎(IdH , 𝑆

2, 𝑡))

= sup
𝑔∈𝐺

d(𝜎(IdH , 𝑆
2, 𝑡),𝜎(𝑔 · IdH , 𝑔 · 𝑆2, 𝑡))

≤ sup
𝑔∈𝐺

((1 − 𝑡)d(IdH , 𝑔 · IdH ) + 𝑡d(𝑆2, 𝑔 · 𝑆2))

using definitions of the diameter and of 𝜋𝑡, the definition of the action of 𝐺 on P(H),
the fact that this action preserves d and the geodesics, and Theorem 2.23 for the last
inequality. Now since 𝑆 ∈ 𝑈 (𝜋) and is self-adjoint, Lemma 3.23 ensures that 𝑆𝑆∗ = 𝑆2

is a fixed point of 𝜃𝜋, so 𝑔 · 𝑆2 = 𝑆2 for all 𝑔 ∈ 𝐺, and the second term in the last
supremum vanishes. We are left with

(1 − 𝑡) sup
𝑔∈𝐺

d(IdH , 𝑔 · IdH ) = (1 − 𝑡)diam(𝜋) = 2(1 − 𝑡) ln( |𝜋 |) = 2 ln( |𝜋 |1−𝑡)

and thus 2 ln( |𝜋𝑡 |) ≤ 2 ln( |𝜋 |1−𝑡). This completes the proof. □

For the next result, we need a tool from real analysis. Recall that if 𝐽 ⊂ ℝ is an
interval and F = {𝑓𝑖 : 𝐽 −→ ℝ}𝑖∈𝐼 is a (not necessarily countable) family of functions
defined on 𝐽, F is called uniformly equicontinuous if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑖 ∈ 𝐼, ∀𝑡, 𝑡′ ∈ 𝐽, |𝑡 − 𝑡′| < 𝛿 =⇒ | 𝑓𝑖(𝑡) − 𝑓𝑖(𝑡′) | < 𝜀.

Lemma 3.33. If F = {𝑓𝑖 : 𝐽 −→ ℝ}𝑖∈𝐼 is uniformly equicontinuous, the function

𝑔 : 𝐽 −→ ℝ

𝑡 ↦−→ sup
𝑖∈𝐼

𝑓𝑖(𝑡)

is continuous on 𝐽.

Proof. Let 𝜀 > 0. By assumption, there exists 𝛿 > 0, depending only on 𝜀, so that

∀𝑖 ∈ 𝐼, ∀𝑡, 𝑡′ ∈ 𝐽, |𝑡 − 𝑡′| < 𝛿 =⇒ | 𝑓𝑖(𝑡) − 𝑓𝑖(𝑡′) | < 𝜀.
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Fix then 𝑡, 𝑡′ ∈ 𝐽 with |𝑡 − 𝑡′| < 𝛿. By the above, 𝑓𝑖(𝑡) < 𝑓𝑖(𝑡′) + 𝜀 for all 𝑖 ∈ 𝐼, whence
𝑔(𝑡) < 𝑔(𝑡′) + 𝜀. Exchanging the role of 𝑡 and 𝑡′ provides 𝑔(𝑡′) < 𝑔(𝑡) + 𝜀, and thus
|𝑔(𝑡) − 𝑔(𝑡′) | < 𝜀. This shows that 𝑔 is continuous, as wanted. □

In fact, note that our proof even provides the uniform continuity of 𝑔.
Additionally, note that if (𝑋, d𝑋 ) is a metric space, then

|d𝑋 (𝑥1, 𝑦2) − d𝑋 (𝑥2, 𝑦1) | ≤ d𝑋 (𝑥1, 𝑥2) + d𝑋 (𝑦1, 𝑦2) (9)

for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋 . Indeed, the triangle inequality implies first that

d𝑋 (𝑥1, 𝑦2) ≤ d𝑋 (𝑥1, 𝑥2) + d𝑋 (𝑥2, 𝑦1) + d𝑋 (𝑦1, 𝑦2)

whence d𝑋 (𝑥1, 𝑦2) − d𝑋 (𝑥2, 𝑦1) ≤ d𝑋 (𝑥1, 𝑥2) + d𝑋 (𝑦1, 𝑦2). In the same way, one gets

d𝑋 (𝑥2, 𝑦1) − d𝑋 (𝑥1, 𝑦2) ≤ d𝑋 (𝑥1, 𝑥2) + d𝑋 (𝑦1, 𝑦2)

yielding
|d𝑋 (𝑥1, 𝑦2) − d𝑋 (𝑥2, 𝑦1) | ≤ d𝑋 (𝑥1, 𝑥2) + d𝑋 (𝑦1, 𝑦2).

We will use these two facts in the proof of the proposition below.

Proposition 3.34. Let 𝜋 be a unitarisable representation of a group 𝐺 with a
smallest positive unitariser 𝑆 ∈ 𝑈 (𝜋). Then the function

[0, 1] −→ ℝ

𝑡 ↦−→ |𝜋𝑡 |

is continuous.

Proof. From the proof of Proposition 3.32, we have

2 ln( |𝜋𝑡 |) = sup
𝑔∈𝐺

d(𝜎(IdH , 𝑆
2, 𝑡), 𝑔 · 𝜎(IdH , 𝑆

2, 𝑡))

so it is enough to prove that the right hand side is a continuous function on [0, 1].
Invoking Lemma 3.33, it is enough to show that the family of functions over which
we take the supremum is uniformly equicontinuous. Let then 𝜀 > 0, and set 𝛿 ··=

𝜀
4∥ ln(𝑆)∥ > 0. Let 𝑔 ∈ 𝐺, and fix 𝑡, 𝑡′ ∈ [0, 1] with |𝑡 − 𝑡′| < 𝛿. By (9), it follows that��d(𝜎(IdH , 𝑆

2, 𝑡), 𝑔 · 𝜎(IdH , 𝑆
2, 𝑡)) − d(𝜎(IdH , 𝑆

2, 𝑡′), 𝑔 · 𝜎(IdH , 𝑆
2, 𝑡′))

��
≤ d(𝜎(IdH , 𝑆

2, 𝑡),𝜎(IdH , 𝑆
2, 𝑡′)) + d(𝑔 · 𝜎(IdH , 𝑆

2, 𝑡), 𝑔 · 𝜎(IdH , 𝑆
2, 𝑡′))

= 2d(𝜎(IdH , 𝑆
2, 𝑡),𝜎(IdH , 𝑆

2, 𝑡′))
= 2∥ ln(𝑆2(𝑡′−𝑡))∥
= 4∥ ln(𝑆)∥ |𝑡′ − 𝑡 |
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< 𝜀

using the invariance of d under the action of 𝐺 for the first equality. The second one
is the definition of the metric d, and the third one is Remark 1.40. We deduce, as
explained above, that 𝑡 ↦−→ 2 ln( |𝜋𝑡 |) is continuous on [0, 1], so 𝑡 ↦−→ |𝜋𝑡 | is continuous
on [0, 1] as well. □

3.5 Proof of Pisier’s theorem

In this final part, we make use of all the framework developed above to establish
Pisier’s result, and translate it completely geometrically. At the end, this provides
another characterization of amenability.

The first key observation is the next proposition.

Proposition 3.35. Let 𝐺 be a unitarisable group. Let (𝜋𝑛)𝑛∈ℕ be a family of
uniformly bounded representations, so that

sup
𝑛∈ℕ

|𝜋𝑛 | < ∞.

Then there exists a constant 𝐶 > 0 and a collection (𝑆𝑛)𝑛∈ℕ with 𝑆𝑛 ∈ 𝑈 (𝜋𝑛) so
that 𝑠(𝑆𝑛) ≤ 𝐶 for any 𝑛 ∈ ℕ.

Proof. For each 𝑛 ∈ ℕ, let 𝜋𝑛 : 𝐺 −→ Aut(H𝑛) be a uniformly bounded representation
of 𝐺 on a Hilbert space H𝑛. Now, consider the representation

𝜋 ··=
⊕
𝑛∈ℕ

𝜋𝑛

on
⊕
𝑛∈ℕ

H𝑛. As sup
𝑛∈ℕ

|𝜋𝑛 | < ∞, 𝜋 is a uniformly bounded representation of 𝐺. As the

latter is unitarisable, there exists 𝑆 ∈ Aut
(⊕
𝑛∈ℕ

H𝑛

)
so that 𝑆−1𝜋(𝑔)𝑆 is unitary for

every 𝑔 ∈ 𝐺. In particular, for each 𝑛 ∈ ℕ, 𝑆|H𝑛
𝜋𝑛(𝑔) (𝑆−1) |𝑆(H𝑛) is unitary for every

𝑔 ∈ 𝐺. Fixing an arbitrary unitary equivalence 𝑈 : 𝑆(H𝑛) −→ H𝑛, it follows that
(𝑈𝑆|H𝑛

)−1 : H𝑛 −→ H𝑛 unitarises 𝜋𝑛, for any 𝑛 ∈ ℕ. We thus set

𝑆𝑛 ··= (𝑈𝑆|H𝑛
)−1

for all 𝑛 ∈ ℕ, and it follows that

𝑠(𝑆𝑛) = 𝑠((𝑈𝑆|H𝑛
)−1)

= ∥(𝑈𝑆|H𝑛
)−1∥∥𝑈𝑆|H𝑛

∥
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= ∥𝑆−1 |𝑆(H𝑛) ∥∥𝑆|H𝑛
∥

≤ ∥𝑆∥∥𝑆−1∥
= 𝑠(𝑆)

using that𝑈 and𝑈−1 are unitary. The statement follows setting 𝐶 ··= 𝑠(𝑆) > 0. □

We can now state and establish one of the main goals of this thesis.

Theorem 3.36. Let 𝐺 be a unitarisable group.
There exist universal constants 𝛼, 𝐾 > 0, depending only on 𝐺, so that for every
uniformly bounded representation 𝜋 of 𝐺, there exists 𝑆 ∈ 𝑈 (𝜋) with

𝑠(𝑆) ≤ 𝐾 |𝜋 |𝛼.

Proof. Fix a unitarisable group𝐺. Towards a contradiction, we suppose that the nega-
tion of the claim holds, i.e. for every 𝛼, 𝐾 > 0, there exists a uniformly bounded rep-
resentation 𝜋𝛼,𝐾 of 𝐺 so that for every 𝑆 ∈ 𝑈 (𝜋), 𝑠(𝑆) > 𝐾 |𝜋 |𝛼. In particular, letting
𝑛 ∈ ℕ and choosing 𝛼 = 𝐾 = 𝑛 provides a Hilbert space H𝑛 and a uniformly bounded
representation 𝜋𝑛 : 𝐺 −→ Aut(H𝑛) so that

𝑠(𝑆) > 𝑛|𝜋𝑛 |𝑛

for all 𝑆 ∈ 𝑈 (𝜋𝑛). By Proposition 3.25, for all 𝑛 ∈ ℕ, we may pick a smallest unitariser
𝑆𝑛 ∈ 𝑈 (𝜋𝑛), and 𝑠(𝑆𝑛) > 𝑛|𝜋𝑛 |𝑛.

We are now going to show that the sequence (𝜋𝑛)𝑛∈ℕ can be chosen with two prop-
erties:

(i) ∀𝑛 ∈ ℕ, |𝜋𝑛 | ≤ 2 and (ii) ∀𝑛 ∈ ℕ, 𝑠(𝑆𝑛) > 𝑛.

First of all, assume that for a fixed 𝑛 ∈ ℕ, |𝜋𝑛 | > 2. Consider then the representa-
tion 𝜋𝑛,𝑡 : 𝐺 −→ Aut(H𝑛) defined as

𝜋𝑛,𝑡 (𝑔) ··= 𝑆−𝑡
𝑛 𝜋𝑛(𝑔)𝑆𝑡𝑛

for every 𝑔 ∈ 𝐺. The function 𝑡 ↦−→ |𝜋𝑛,𝑡 | is continuous on [0, 1] by Proposition 3.34,
and takes value |𝜋𝑛,0 | = |𝜋𝑛 | > 2 at 𝑡 = 0 and value |𝜋𝑛,1 | = 1 at 𝑡 = 1 since 𝑆𝑛 ∈ 𝑈 (𝜋𝑛).
By the intermediate value theorem, there exists 𝑡𝑛 ∈ (0, 1) so that |𝜋𝑛,𝑡𝑛 | = 2. For 𝜋𝑛,𝑡𝑛,
Lemma 3.27 provides a smallest unitariser 𝑆1−𝑡𝑛

𝑛 , whose size satisfies

𝑠(𝑆1−𝑡𝑛
𝑛 ) = 𝑠(𝑆𝑛)1−𝑡𝑛 > (𝑛|𝜋𝑛 |𝑛)1−𝑡𝑛 ≥ 𝑛1−𝑡𝑛 |𝜋𝑛,𝑡𝑛 |𝑛 ≥ 2𝑛 > 𝑛

using Corollary 3.28 for the first equality. The first inequality comes from the assump-
tion on 𝑠(𝑆𝑛), and the second is Proposition 3.32. Henceforth, in our initial sequence,
we can replace 𝜋𝑛 by 𝜋𝑛,𝑡𝑛 and this representation now satisfies both (i) and (ii).

On the other hand if |𝜋𝑛 | ≤ 2 (so (i) already holds), it is enough to observe that
|𝜋𝑛 | ≥ 1 to get

𝑠(𝑆𝑛) > 𝑛|𝜋𝑛 |𝑛 ≥ 𝑛
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and thus (ii) holds as well.
Hence we just proved that without restriction, we may assume that our sequence

(𝜋𝑛)𝑛∈ℕ satisfies (i) and (ii) above. We are now in position to apply Proposition 3.35,
and we get a constant 𝐶 > 0 and a family (𝑇𝑛 : H𝑛 −→ H𝑛)𝑛∈ℕ of bounded operators,
so that 𝑇𝑛 unitarises 𝜋𝑛, with 𝑠(𝑇𝑛) ≤ 𝐶 for all 𝑛 ∈ ℕ. Now it follows

𝐶 ≥ 𝑠(𝑇𝑛) ≥ 𝑠(𝑆𝑛) > 𝑛

for any 𝑛 ∈ ℕ, which is absurd. Thus there must exist 𝛼, 𝐾 > 0 so that, for any
uniformly bounded representation 𝜋, there is 𝑆 ∈ 𝑈 (𝜋) with

𝑠(𝑆) ≤ 𝐾 |𝜋 |𝛼.

This concludes the proof. □

As we saw in the proof of Proposition 3.25, the existence of a smallest unitariser
for a unitarisable representation 𝜋 of the group 𝐺 is equivalent to the existence of a
fixed point of 𝜃𝜋 of norm 1 realizing the distance between IdH and P(H)𝐺1 .

We now show that we can choose this fixed point conveniently in order to relate its
distance to IdH with the size of a smallest unitariser.

To this aim, we start by noticing that if a self-adjoint operator 𝑇 ∈ B(H) has
spectral symmetry, in the sense that

max
𝜆∈𝜎(𝑇)

𝜆 =
1

min
𝜆∈𝜎(𝑇)

𝜆

then (i) 𝑠(𝑇) = ∥𝑇 ∥2 and, if in addition 𝑇 is positive, (ii) ∥ ln(𝑇)∥ = ln(∥𝑇 ∥).
Indeed, having spectral symmetry simply means that ∥𝑇 ∥ = ∥𝑇−1∥, so 𝑠(𝑇) =

∥𝑇 ∥∥𝑇−1∥ = ∥𝑇 ∥2. If additionally 𝑇 is positive, we directly get

∥ ln(𝑇)∥ = max(ln(∥𝑇 ∥), ln(∥𝑇−1∥)) = ln(∥𝑇 ∥)

by Lemma 2.5.
We use this observation to prove two auxiliary lemmas.

Lemma 3.37. Let 𝜋 be a unitarisable representation of a group 𝐺. If 𝑆 ∈ 𝑈 (𝜋),
then there is 𝑇′ ∈ P(H)𝐺 so that

d(𝑇′, IdH ) = ln(𝑠(𝑆)).

Proof. Fix then 𝑆 a unitariser of 𝜋. Multiplying 𝑆 by 𝜆 ··=
√︃

∥𝑆−1∥
∥𝑆∥ , we get an invertible

operator 𝑆′ = 𝜆𝑆 that still unitarises 𝜋, that has the same size as 𝑆 by Proposition
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3.5(ii), and which furthermore has spectral symmetry. By Lemma 3.23, we get a fixed
point

𝑇′ = 𝑆′(𝑆′)∗ = (𝜆𝑆) (𝜆𝑆)∗ = 𝜆2𝑆𝑆∗

which has also spectral symmetry, because of the 𝐶∗−identity and the spectral sym-
metry of 𝑆′:

∥𝑇′∥ = ∥𝑆′(𝑆′)∗∥ = ∥𝑆′∥2 = ∥𝑆′−1∥2 = ∥(𝑆′)−1(𝑆′−1)∗∥ = ∥𝑇′−1∥.

Additionally, note that ∥𝑇′∥ = 𝜆2∥𝑆𝑆∗∥ =
∥𝑆−1∥
∥𝑆∥ ∥𝑆∥2 = ∥𝑆∥∥𝑆−1∥ = 𝑠(𝑆) and thus it

follows that
d(𝑇′, IdH ) = ∥ ln(𝑇′)∥ = ln(∥𝑇′∥) = ln(𝑠(𝑆)).

This establishes the proposition. □

Let us now explain how we pass from arbitrary fixed points to unitarisers.

Lemma 3.38. Let 𝜋 be a unitarisable representation of a group 𝐺. If 𝑇 ∈
P(H)𝐺, then there exists 𝑆 ∈ 𝑈 (𝜋) so that

ln(𝑠(𝑆)) ≤ d(𝑇, IdH ).

Proof. Let 𝑇 ∈ P(H)𝐺. Applying Lemma 3.23, we find that 𝑆 = 𝑇1/2 is in 𝑈 (𝜋). But
now we can apply Lemma 3.37 to find a fixed point 𝑇′ with

d(𝑇′, IdH ) = ln(𝑠(𝑆))

and additionally the proof of Lemma 3.37 gives us the exact procedure to follow to
recover 𝑇′. In particular, 𝑇′ has spectral symmetry. Henceforth, we are left to show
that

d(𝑇′, IdH ) ≤ d(𝑇, IdH ). (10)
The left-hand side is ln(∥𝑇′∥), while the right-hand side is max(ln(∥𝑇 ∥), ln(∥𝑇−1∥)).
To establish (10), we then distinguish two cases:

(i) ∥𝑇−1∥ ≤ ∥𝑇 ∥ and (ii) ∥𝑇−1∥ ≥ ∥𝑇 ∥.

(i) In that case, we must see ln(∥𝑇′∥) ≤ ln(∥𝑇 ∥), or equivalently ∥𝑇′∥ ≤ ∥𝑇 ∥ (as
ln : (0,∞) −→ ℝ is increasing). We reformulate this inequality using the definition of
𝑆 and the construction of 𝑇′ coming from the proof of 3.37:

∥𝑇′∥ ≤ ∥𝑇 ∥ ⇐⇒ ∥𝑇′∥ ≤ ∥𝑇1/2(𝑇1/2)∗∥
⇐⇒ 𝜆2∥𝑆∥2 ≤ ∥𝑆∥2

⇐⇒ 𝜆2 ≤ 1
⇐⇒ ∥𝑆−1∥ ≤ ∥𝑆∥
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But this last inequality holds, since

∥𝑆−1∥ = ∥(𝑇1/2)−1∥ = ∥𝑇−1∥1/2 ≤ ∥𝑇 ∥1/2 = ∥𝑇1/2∥ = ∥𝑆∥.
using (ii) and (iii) of Corollary 1.44. This proves (10) in the case (i).

(ii) Now assume that ∥𝑇−1∥ ≥ ∥𝑇 ∥. This time, we must show that ln(∥𝑇′∥) ≤
ln(∥𝑇−1∥), or equivalently ∥𝑇′∥ ≤ ∥𝑇−1∥. We proceed exactly as in the previous case,
and we get

∥𝑇′∥ ≤ ∥𝑇−1∥ ⇐⇒ ∥𝑇′∥ ≤ ∥𝑇−1/2(𝑇−1/2)∗∥
⇐⇒ 𝜆2∥𝑆∥2 ≤ ∥𝑇−1/2∥2

⇐⇒ 𝜆2∥𝑆∥2 ≤ ∥𝑆−1∥2

⇐⇒ ∥𝑆−1∥
∥𝑆∥ ∥𝑆∥2 ≤ ∥𝑆−1∥2

⇐⇒ ∥𝑆∥ ≤ ∥𝑆−1∥.
Here again, this last inequality holds since

∥𝑆∥ = ∥𝑇1/2∥ = ∥𝑇 ∥1/2 ≤ ∥𝑇−1∥1/2 = ∥𝑇−1/2∥ = ∥𝑆−1∥.
This proves (10) in the case (ii), and finishes the proof. □

We can now combine these two lemmas to obtain the following.

Proposition 3.39. Let 𝜋 be a unitarisable representation of a group 𝐺, and let
𝑆 ∈ 𝑈 (𝜋) be a smallest unitariser. Then there exists a fixed point 𝑇′ ∈ P(H)𝐺
so that

d(𝑇′, IdH ) = d(P(H)𝐺, IdH ) = ln(𝑠(𝑆)).

Proof. Let then 𝜋 be a unitarisable representation of a group 𝐺. From Lemma 3.38,
it follows that

inf
𝑇∈P(H)𝐺

d(𝑇, IdH ) ≥ inf
𝑆∈𝑈 (𝜋)

ln(𝑠(𝑆))

and from Lemma 3.37 we get

inf
𝑇∈P(H)𝐺

d(𝑇, IdH ) ≤ inf
𝑆∈𝑈 (𝜋)

ln(𝑠(𝑆)).

Thus the two infimum coincide. Now, choose a smallest unitariser 𝑆 of 𝜋. Apply
Lemma 3.37 to get a fixed point 𝑇′ so that

d(𝑇′, IdH ) = ln(𝑠(𝑆)).
As 𝑆 minimizes sizes of unitarisers of 𝜋, it also minimizes the logarithm of the sizes
of unitarisers of 𝜋, so

d(𝑇′, IdH ) = ln(𝑠(𝑆)) = inf
�̃�∈𝑈 (𝜋)

ln(�̃�) = inf
𝑇∈P(H)𝐺

d(𝑇, IdH ) = d(P(H)𝐺, IdH )

and the claim follows. □
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This result translates Pisier’s theorem geometrically.

Corollary 3.40. Let 𝐺 be a unitarisable group.
There exist universal constants 𝐶 ∈ ℝ, 𝛼 > 0, depending only on 𝐺, so that for
any uniformly bounded representation 𝜋 of 𝐺, one has

d(P(H)𝐺, IdH ) = d(P(H)𝐺,OIdH ) ≤ 𝐶 + 𝛼

2
diam(𝜋).

Proof. Fix 𝐺 a unitarisable group, and consider the two constants 𝛼, 𝐾 > 0 given by
Theorem 3.36. Let 𝜋 be a uniformly bounded representation of 𝐺. The first equality is
a direct consequence of the invariance of the metric d under the action of Aut(H) on
P(H) (Proposition 2.6):

d(P(H)𝐺,OIdH ) = inf
𝑔∈𝐺, 𝑇∈P(H)𝐺

d(𝑇, 𝜃𝜋 (𝑔, IdH ))

= inf
𝑔∈𝐺, 𝑇∈P(H)𝐺

d(𝜃𝜋 (𝑔−1, 𝑇), IdH )

= inf
𝑇∈P(H)𝐺

d(𝑇, IdH )

= d(P(H)𝐺, IdH ).

Let now 𝑆 be a smallest unitariser for 𝜋. By Proposition 3.39, d(P(H)𝐺, IdH ) equals
ln(𝑠(𝑆)). Hence

d(P(H)𝐺, IdH ) = ln(𝑠(𝑆)) ≤ ln(𝐾 |𝜋 |𝛼) = ln(𝐾) +𝛼 ln( |𝜋 |) = ln(𝐾) + 𝛼

2
diam(𝜋)

using 𝑠(𝑆) ≤ 𝐾 |𝜋 |𝛼 for the upper bound and Proposition 3.31 for the last equality. We
then set 𝐶 ··= ln(𝐾) and we are done. □

In [25], Pisier showed that a discrete group 𝐺 is amenable if and only if Theorem
3.36 holds with 𝐾 = 1 and 𝛼 = 2. Putting these values in Corollary 3.40, we obtain
that a group 𝐺 is amenable if and only if

d(P(H)𝐺,OIdH ) ≤ diam(𝜋)

for any uniformly bounded representation 𝜋 of 𝐺. Hence, letting

𝑋𝜋 ··= {𝑇 ∈ P(H) : d(𝑇,OIdH ) ≤ diam(OIdH )}
= {𝑇 ∈ P(H) : d(𝑇,OIdH ) ≤ diam(𝜋)}

we obtain another characterization of amenability.

Corollary 3.41. A group 𝐺 is amenable if and only if 𝑋𝜋 ∩P(H)𝐺 ≠ ∅ for every
uniformly bounded representation 𝜋 of 𝐺.
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With this characterization, Dixmier’s problem is turned as:

Is it true that 𝑋𝜋∩P(H)𝐺 is not empty, for every uniformly bounded representation
of a unitarisable group 𝐺?
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A. General topology

In this part we proceed to recalling general background material from general
topology.

The first definition we may recall is that of a topology on a set.

Definition A.1. Let 𝑋 be a set.
A topology on 𝑋 is a collection 𝜏 of subsets of 𝑋 so that

(i) ∅, 𝑋 ∈ 𝜏.

(ii) If {𝑈𝑖}𝑖∈𝐼 is a family of elements of 𝜏, then
⋃
𝑖∈𝐼
𝑈𝑖 ∈ 𝜏.

(iii) If𝑈1,𝑈2 ∈ 𝜏, then𝑈1 ∩𝑈2 ∈ 𝜏.

A set equipped with a topology 𝜏 is called a topological space, and the elements of
𝜏 are called the open subsets of 𝑋 .

Example A.2. (i) If 𝑋 is a set, then 𝜏disc = Ps(𝑋) is a topology on 𝑋 , called the discrete
topology. For this topology, all subsets of 𝑋 are open. Likewise, the family 𝜏triv = {∅, 𝑋}
also forms a topology, called the trivial topology.
(ii) If 𝜏1 and 𝜏2 are both topologies on 𝑋 , then 𝜏1 ∩ 𝜏2 is a topology on 𝑋 .
(iii) If (𝑋, 𝜏𝑋 ) is a topological space, and 𝑌 ⊂ 𝑋 , the collection

𝜏𝑌 ··= {𝑈 ∩𝑌 : 𝑈 ∈ 𝜏𝑋 }

is a topology on 𝑌 . Indeed, as ∅ = ∅ ∩ 𝑌 , 𝑌 = 𝑋 ∩ 𝑌 and ∅, 𝑋 ∈ 𝜏𝑋 , we see that
∅, 𝑌 ∈ 𝜏𝑌 . If 𝑉1, 𝑉2 ∈ 𝜏𝑌 , we may write 𝑉1 = 𝑈1 ∩ 𝑌 , 𝑉2 = 𝑈2 ∩ 𝑌 for some 𝑈1,𝑈2 ∈ 𝜏𝑋
and it follows that

𝑉1 ∩ 𝑉2 = (𝑈1 ∩𝑌) ∩ (𝑈2 ∩𝑌) = (𝑈1 ∩𝑈2) ∩𝑌.

As 𝜏𝑋 is a topology, 𝑈1 ∩𝑈2 ∈ 𝜏𝑋 and we deduce 𝑉1 ∩ 𝑉2 ∈ 𝜏𝑌 . Lastly, if {𝑉𝑖}𝑖∈𝐼 is a
collection of elements of 𝜏𝑌 , we write 𝑉𝑖 = 𝑈𝑖 ∩𝑌 with𝑈𝑖 ∈ 𝜏𝑋 for each 𝑖 ∈ 𝐼 and thus⋃

𝑖∈𝐼
𝑉𝑖 =

⋃
𝑖∈𝐼

(𝑈𝑖 ∩𝑌) =
(⋃
𝑖∈𝐼
𝑈𝑖

)
∩𝑌.

Since 𝜏𝑋 is a topology, we see that
⋃
𝑖∈𝐼
𝑈𝑖 ∈ 𝜏𝑋 , whence

⋃
𝑖∈𝐼
𝑉𝑖 ∈ 𝜏𝑌 , as wanted. Hence

𝜏𝑌 is a topology on 𝑌 , called the induced topology.

If 𝜏1 and 𝜏2 are two topologies on a set 𝑋 , we say that 𝜏1 is smaller than 𝜏2, or that
𝜏2 is larger than 𝜏1, if 𝜏1 ⊂ 𝜏2. This relation is an order relation on the set of topologies
of 𝑋 .
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Let (𝑋, 𝜏) be a topological space. A subset 𝐹 ⊂ 𝑋 is closed if 𝑋 \ 𝐹 is open, and for
𝑥 ∈ 𝑋 a subset 𝑉 ⊂ 𝑋 is called a neighbourhood of 𝑥 if there exists an open set𝑈 ⊂ 𝑋

so that 𝑥 ∈ 𝑈 ⊂ 𝑉 .
From the definition, an open set is a neighbourhood of any of its elements. Con-

versely, if𝑈 ⊂ 𝑋 is a neighbourhood of any of its elements, then for any 𝑥 ∈ 𝑈, we find
an open set𝑈𝑥 ⊂ 𝑋 so that 𝑥 ∈ 𝑈𝑥 ⊂ 𝑈. This implies that𝑈 itself is open, as

𝑈 =
⋃
𝑥∈𝑈

𝑈𝑥.

For 𝐴 ⊂ 𝑋 , its interior is the subset 𝐴◦ defined as

𝐴◦ ··= {𝑥 ∈ 𝑋 : 𝐴 is a neighbourhood of 𝑥}
and its closure is

𝐴 ··= {𝑥 ∈ 𝑋 : 𝑋 \ 𝐴 is not a neighbourhood of 𝑥}.

Directly from the definitions, we have 𝐴◦ ⊂ 𝐴 ⊂ 𝐴, and we may define the boundary
of 𝐴 as 𝜕𝐴 ··= 𝐴 \ 𝐴◦. Lastly, a subset 𝐴 ⊂ 𝑋 is called dense in 𝑋 if 𝐴 = 𝑋 .

Now we know the objects, we turn to the morphisms of the theory.

Definition A.3. Let (𝑋, 𝜏𝑋 ) and (𝑌, 𝜏𝑌 ) be two topological spaces.
A map 𝑓 : 𝑋 −→ 𝑌 is continuous if 𝑓 −1(𝑈) ∈ 𝜏𝑋 for all𝑈 ∈ 𝜏𝑌 .

Here are examples that follow from the definition.

Example A.4. (i) For any topological space (𝑋, 𝜏𝑋 ), the map Id𝑋 : (𝑋, 𝜏𝑋 ) −→ (𝑋, 𝜏𝑋 )
is continuous. If 𝜏1 and 𝜏2 are different topologies on 𝑋 , Id𝑋 : (𝑋, 𝜏1) −→ (𝑋, 𝜏2) is
continuous if and only if 𝜏2 ⊂ 𝜏1.
(ii) Any constant map is continuous. Indeed if 𝑓 : 𝑋 −→ 𝑌 is so that 𝑓 (𝑥) = 𝑦0 for any
𝑥 ∈ 𝑋 and some 𝑦0 ∈ 𝑌 , then for 𝑈 ⊂ 𝑌 open, 𝑓 −1(𝑈) is either empty or equal to 𝑋 ,
and these subsets are open with respect to any topology on 𝑋 .
(iii) If 𝑋 carries its discrete topology, any map 𝑓 : 𝑋 −→ 𝑌 is continuous. Likewise,
any map between 𝑋 and 𝑌 is continuous if 𝑌 carries its trivial topology.
(iv) The composition of two continuous maps is a continuous map. Suppose indeed
that 𝑓 : (𝑋, 𝜏𝑋 ) −→ (𝑌, 𝜏𝑌 ), 𝑔 : (𝑌, 𝜏𝑌 ) −→ (𝑍, 𝜏𝑍) are both continuous and fix𝑈 ∈ 𝜏𝑍.
We have

(𝑔 ◦ 𝑓 )−1(𝑈) = 𝑓 −1(𝑔−1(𝑈))
and the continuity of 𝑔 ensures that 𝑔−1(𝑈) ∈ 𝜏𝑌 . Continuity of 𝑓 now ensures that
𝑓 −1(𝑔−1(𝑈)) ∈ 𝜏𝑋 , whence 𝑔 ◦ 𝑓 is continuous.

As the definition of continuity involves inverse images of open sets, and as inverse
images are compatible with the complement, a map 𝑓 : 𝑋 −→ 𝑌 between two topo-
logical spaces is continuous if and only if 𝑓 −1(𝐹) is closed in 𝑋 for any closed subset
𝐹 ⊂ 𝑌 .
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Continuity can also be formulated locally, via neighbourhoods of points.

Proposition A.5. Let (𝑋, 𝜏𝑋 ), (𝑌, 𝜏𝑌 ) be two topological spaces.
A map 𝑓 : 𝑋 −→ 𝑌 is continuous if and only if, for any 𝑥 ∈ 𝑋 , if 𝑉 is a neighbour-
hood of 𝑓 (𝑥) ∈ 𝑌 , 𝑓 −1(𝑉) is a neighbourhood of 𝑥 ∈ 𝑋 .

Proof. Suppose first that 𝑓 is continuous. Let 𝑥 ∈ 𝑋 , and fix𝑉 a neighbourhood of 𝑓 (𝑥)
in 𝑌 . Hence there is 𝑈 ∈ 𝜏𝑌 so that 𝑓 (𝑥) ∈ 𝑈 ⊂ 𝑉 . This implies 𝑥 ∈ 𝑓 −1(𝑈) ⊂ 𝑓 −1(𝑉),
and as 𝑓 is continuous, 𝑓 −1(𝑈) ∈ 𝜏𝑋 . This proves that 𝑓 −1(𝑉) is a neighbourhood of 𝑥,
as wanted.

Conversely, fix 𝑈 ∈ 𝜏𝑌 , and let 𝑥 ∈ 𝑓 −1(𝑈). Then 𝑓 (𝑥) ∈ 𝑈, and 𝑈 is a neighbour-
hood of 𝑓 (𝑥), so by the assumption we deduce that 𝑓 −1(𝑈) is a neighbourhood of 𝑥.
This proves that 𝑓 −1(𝑈) is a neighbourhood of any of its elements, which means it is
an open set in 𝑋 . Hence 𝑓 is continuous, and we are done. □

We can now introduce the isomorphisms of the theory.

Definition A.6. Let 𝑋,𝑌 be two topological spaces.
A map 𝑓 : 𝑋 −→ 𝑌 is a homeomorphism if 𝑓 is continuous, bijective, and 𝑓 −1 is
continuous.

When there is a homeomorphism between 𝑋 and𝑌 , we say that 𝑋 and𝑌 are homeo-
morphic, and we note 𝑋 � 𝑌 . This is an equivalence relation on the class of topological
spaces.

We now turn to study a huge class of topological spaces, that plays a central role
in general topology, namely metric spaces.

Definition A.7. Let 𝑋 be a set.
A metric on 𝑋 is a map d𝑋 : 𝑋 × 𝑋 −→ [0,∞) so that

(i) d𝑋 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.

(ii) d𝑋 (𝑥, 𝑦) = d𝑋 (𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝑋 .

(iii) d𝑋 (𝑥, 𝑧) ≤ d𝑋 (𝑥, 𝑦) + d𝑋 (𝑦, 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

Property (ii) above is called the symmetry of d𝑋 , while (iii) is the triangle inequality.
A set 𝑋 equipped with a metric is called a metric space.

Given a metric d𝑋 on a set 𝑋 , we denote 𝐵d𝑋 (𝑥, 𝑟) the ball of radius 𝑟 > 0 centered
at 𝑥 ∈ 𝑋 , defined as

𝐵d𝑋 (𝑥, 𝑟) ··= {𝑦 ∈ 𝑋 : d𝑋 (𝑥, 𝑦) < 𝑟}.
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Example A.8. (i) If 𝑋 is a set, the map d: 𝑋 × 𝑋 −→ [0,∞) sending (𝑥, 𝑦) to 0 if 𝑥 = 𝑦
and 1 otherwise, is a metric, called the discrete metric.
(ii) If 𝑋 = ℝ𝑛, 𝑛 ≥ 1, and 𝑝 ∈ [1,∞), we can define a metric d𝑝 on ℝ𝑛 by the formula

d𝑝(𝑥, 𝑦) ··=
( 𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |𝑝
)1/𝑝

for 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ ℝ𝑛. The case 𝑝 = 2 corresponds to the euclidean
metric. We can also define d𝑝 for 𝑝 = ∞, by

d∞(𝑥, 𝑦) ··= max
1≤𝑖≤𝑛

|𝑥𝑖 − 𝑦𝑖 |

for all 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ ℝ𝑛.

A metric d𝑋 on 𝑋 induces a topology 𝜏d𝑋 on 𝑋 , by declaring that a subset𝑈 ⊂ 𝑋 is
in 𝜏d𝑋 if for any 𝑥 ∈ 𝑈, there exists 𝑟(𝑥) > 0 so that 𝐵d𝑋 (𝑥, 𝑟(𝑥)) ⊂ 𝑈.

For this topology, if 𝑥 ∈ 𝑋 and 𝑟 > 0, the ball 𝐵d𝑋 (𝑥, 𝑟) is open: if 𝑦 ∈ 𝐵d𝑋 (𝑥, 𝑟),
then 𝑟′ ··= 𝑟 − d𝑋 (𝑥, 𝑦) > 0, and 𝐵d𝑋 (𝑦, 𝑟′) ⊂ 𝐵d𝑋 (𝑥, 𝑟). Indeed if 𝑧 ∈ 𝐵d𝑋 (𝑦, 𝑟′) then
d𝑋 (𝑧, 𝑦) < 𝑟′ whence

d𝑋 (𝑧, 𝑥) ≤ d𝑋 (𝑧, 𝑦) + d𝑋 (𝑦, 𝑥) < 𝑟′ + d𝑋 (𝑥, 𝑦) = 𝑟

using the triangle inequality and the symmetry of d𝑋 . 𝐵d𝑋 (𝑥, 𝑟) is then called the open
ball of radius 𝑟 > 0 around 𝑥 ∈ 𝑋 . Likewise, if 𝑥 ∈ 𝑋 and 𝑟 > 0 the set

𝐵′
d𝑋 (𝑥, 𝑟) ··= {𝑦 ∈ 𝑋 : d(𝑥, 𝑦) ≤ 𝑟}

is closed in 𝑋 . It is the closed ball of radius 𝑟 > 0 around 𝑥 ∈ 𝑋 .
Moreover, two metrics d𝑋 , d′𝑋 on a set 𝑋 are equivalent if there exists 𝑐, 𝑐′ > 0 so

that
𝑐d𝑋 (𝑥, 𝑦) ≤ d′𝑋 (𝑥, 𝑦) ≤ 𝑐

′d𝑋 (𝑥, 𝑦)
for any 𝑥, 𝑦 ∈ 𝑋 .

Proposition A.9. If d𝑋 and d′
𝑋

are equivalent, then 𝜏d𝑋 = 𝜏d′
𝑋
.

Proof. If the two metrics are equivalent and 𝑐, 𝑐′ > 0 are as above, we have

𝐵d′
𝑋
(𝑥, 𝑐𝑟) ⊂ 𝐵d𝑋 (𝑥, 𝑟) ⊂ 𝐵d′

𝑋
(𝑥, 𝑐′𝑟)

for any 𝑥 ∈ 𝑋 and 𝑟 > 0. Now fix 𝑈 ∈ 𝜏d𝑋 . For any 𝑥 ∈ 𝑈, we find 𝑟(𝑥) > 0 so
that 𝐵d𝑋 (𝑥, 𝑟(𝑥)) ⊂ 𝑈. By the left most inclusion above we deduce 𝐵d′

𝑋
(𝑥, 𝑐𝑟(𝑥)) ⊂ 𝑈,

which implies 𝑈 ∈ 𝜏d′
𝑋
. Hence 𝜏d𝑋 ⊂ 𝜏d′

𝑋
. The same game using the other inclusion

above shows 𝜏d′
𝑋
⊂ 𝜏d𝑋 , and thus 𝜏d𝑋 = 𝜏d′

𝑋
. □

Now, let us prove the following characterization of continuity for maps between
metric spaces.
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Theorem A.10. Let (𝑋, d𝑋 ), (𝑌, d𝑌 ) be two metric spaces.
A map 𝑓 : 𝑋 −→ 𝑌 is continuous if and only if for any 𝑥 ∈ 𝑋 , for any 𝜀 > 0, there
is 𝛿 > 0 so that if 𝑥′ ∈ 𝑋 satisfies d𝑋 (𝑥, 𝑥′) < 𝛿, then d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) < 𝜀.

Proof. Suppose first that 𝑓 is continuous, and fix 𝑥 ∈ 𝑋 , 𝜀 > 0. By Proposition A.5, this
means that for any neighbourhood 𝑉 of 𝑓 (𝑥) in𝑌 , 𝑓 −1(𝑉) is a neighbourhood of 𝑥 in 𝑋 .
In particular, for 𝑉 = 𝐵d𝑌 ( 𝑓 (𝑥), 𝜀), 𝑓 −1(𝑉) is a neighbourhood of 𝑥 in 𝑋 . It follows that
there exists 𝛿 > 0 so that 𝐵d𝑋 (𝑥, 𝛿) ⊂ 𝑓 −1(𝐵d𝑌 ( 𝑓 (𝑥), 𝜀)). This last inclusion exactly
means that if 𝑥′ ∈ 𝑋 is such that d𝑋 (𝑥, 𝑥′) < 𝛿, then d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) < 𝜀, which proves
one direction.

Conversely, fix 𝑥 ∈ 𝑋 and 𝑉 ⊂ 𝑌 a neighbourhood of 𝑓 (𝑥). This implies there
exists 𝜀 > 0 with 𝐵d𝑌 ( 𝑓 (𝑥), 𝜀) ⊂ 𝑉 . Using the assumption, we find 𝛿 > 0 so that
d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) < 𝜀 if d𝑋 (𝑥, 𝑥′) < 𝛿, or equivalently so that

𝐵d𝑋 (𝑥, 𝛿) ⊂ 𝑓 −1(𝐵d𝑌 ( 𝑓 (𝑥), 𝜀)).

As 𝑓 −1(𝐵d𝑌 ( 𝑓 (𝑥), 𝜀)) ⊂ 𝑓 −1(𝑉), we proved there exists 𝛿 > 0 so that 𝑥 ∈ 𝐵d𝑋 (𝑥, 𝛿) ⊂
𝑓 −1(𝑉). We deduce that 𝑓 −1(𝑉) is a neighbourhood of 𝑥 in 𝑋 . As 𝑥 ∈ 𝑋 was arbitrary,
Proposition A.5 implies that 𝑓 is continuous. □

In this formulation of continuity, the 𝛿 we found after fixing 𝜀 > 0 and 𝑥 ∈ 𝑋 may
depend on both 𝜀 > 0 and 𝑥 ∈ 𝑋 . It is sometimes useful to find a uniform 𝛿, the
same for any point 𝑥 in 𝑋 , and that depends only on the particular 𝜀 > 0 we fixed
beforehand. This leads to the following terminology: a map 𝑓 : (𝑋, d𝑋 ) −→ (𝑌, d𝑌 )
between two metric spaces is uniformly continuous if for any 𝜀 > 0, there is 𝛿 > 0 such
that if 𝑥, 𝑥′ ∈ 𝑋 satisfy d𝑋 (𝑥, 𝑥′) < 𝛿, then d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) < 𝜀.

Two remarks are in order here. Firstly, from this definition, any uniformly continu-
ous map is continuous. Secondly, and in contrast with the notion of continuity, uniform
continuity is a metric notion, and has no natural analog for more general topological
spaces.

If 𝑘 > 0, an application 𝑓 : (𝑋, d𝑋 ) −→ (𝑌, d𝑌 ) between two metric spaces is called
𝑘−Lipschitz if

d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝑘d𝑋 (𝑥, 𝑥′)
for any 𝑥, 𝑥′ ∈ 𝑋 . Such a map is automatically uniformly continuous, as for a fixed
𝜀 > 0, it suffices to choose 𝛿 ··= 𝜀

𝑘
> 0 in the above definition. In particular, 𝑘−Lipschitz

maps are continuous.
If (𝑋, d𝑋 ), (𝑌, d𝑌 ) are two metric spaces, an isometry between 𝑋 and 𝑌 is a surjec-

tive map 𝑓 : 𝑋 −→ 𝑌 so that

d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) = d𝑋 (𝑥, 𝑥′)

for all 𝑥, 𝑥′ ∈ 𝑋 . This condition implies that 𝑓 is injective, because if 𝑥, 𝑥′ ∈ 𝑋 are so
that 𝑓 (𝑥) = 𝑓 (𝑥′), we get

d𝑋 (𝑥, 𝑥′) = d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) = 0
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so 𝑥 = 𝑥′, and uniformly continuous, because 1−Lipschitz.
Here is a useful characterization of uniformly continuous maps.

Proposition A.11. Let (𝑋, d𝑋 ), (𝑌, d𝑌 ) be two metric spaces.
A map 𝑓 : 𝑋 −→ 𝑌 is uniformly continuous if and only if there exists an increas-
ing function 𝐹 : [0,∞) −→ [0,∞] so that 𝐹 (0) = 0, 𝐹 (𝑡) → 0 as 𝑡 → 0, and

d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝐹 (d𝑋 (𝑥, 𝑥′))

for all 𝑥, 𝑥′ ∈ 𝑋 .

Proof. To begin, assume that such a function 𝐹 exists, and let us show that 𝑓 is uni-
formly continuous. Fix 𝜀 > 0. The fact that 𝐹 (𝑡) → 0 when 𝑡 → 0 readily means there
exists 𝛿 > 0 (depending only on 𝜀) so that 𝑡 < 𝛿 implies 𝐹 (𝑡) < 𝜀. In particular, for
𝑥, 𝑥′ ∈ 𝑋 with d𝑋 (𝑥, 𝑥′) < 𝛿, we get

d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝐹 (d𝑋 (𝑥, 𝑥′)) < 𝜀

whence 𝑓 is uniformly continuous.
Conversely, assume that 𝑓 is uniformly continuous, and set

𝐹 (𝑡) ··= sup{d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) : d𝑋 (𝑥, 𝑥′) ≤ 𝑡}

for all 𝑡 ∈ [0,∞). From this definition, 𝐹 is positive, increasing, satisfies 𝐹 (0) = 0 and

d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝐹 (d𝑋 (𝑥, 𝑥′))

for all 𝑥, 𝑥′ ∈ 𝑋 . Lastly, let 𝜀 > 0. The uniform continuity of 𝑓 provides 𝛿 > 0 so that

𝑥, 𝑥′ ∈ 𝑋, d𝑋 (𝑥, 𝑥′) < 𝛿 =⇒ d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) < 𝜀.

Now, if 𝑡 ∈ [0,∞) is so that 𝑡 < 𝛿, then

𝐹 (𝑡) = sup{d𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) : d𝑋 (𝑥, 𝑥′) ≤ 𝑡} < 𝜀.

Thus 𝐹 (𝑡) → 0 when 𝑡 → 0, concluding the proof. □

When 𝑓 is uniformly continuous, a function 𝐹 as in the proposition is often called
a modulus of continuity of 𝑓 .

Definition A.12. Let 𝑋 be a metric space and 𝐴 ⊂ 𝑋 .
Its diameter is defined as

diam(𝐴) ··= sup
𝑥,𝑦∈𝐴

d𝑋 (𝑥, 𝑦)

and we say that 𝐴 is bounded if diam(𝐴) < ∞.
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Moreover, if 𝐴, 𝐵 ⊂ 𝑋 and 𝑥 ∈ 𝑋 , the distance between 𝑥 and 𝐴 is defined as

d𝑋 (𝑥, 𝐴) ··= inf
𝑎∈𝐴

d𝑋 (𝑥, 𝑎)

and the distance between 𝐴 and 𝐵 is d𝑋 (𝐴, 𝐵) ··= inf
𝑎∈𝐴, 𝑏∈𝐵

d𝑋 (𝑎, 𝑏).

As we will see below, metric spaces have a lot of useful topological properties. This
motivates to ask whether all topological spaces are in fact metric spaces, and if not,
which spaces still have a topology arising from a metric.

Definition A.13. A topological space (𝑋, 𝜏𝑋 ) is called metrisable if there exists
a metric d𝑋 on 𝑋 so that 𝜏𝑋 = 𝜏d𝑋 .

Example A.14. (i) Obviously, any metric space is metrisable.
(ii) A discrete space is metrisable, since the discrete metric induces the discrete topol-
ogy.

The goal of the next definition is to provide an efficient way of putting a topology
on a space without describing all open subsets.

Definition A.15. Let (𝑋, 𝜏𝑋 ) be a topological space.

(i) A subset B ⊂ 𝜏𝑋 is a basis for 𝜏𝑋 if any element of 𝜏𝑋 is a union of elements
of B.

(ii) A subset S ⊂ 𝜏𝑋 is a subbasis for 𝜏𝑋 if the set

B ··= {𝑆1 ∩ · · · ∩ 𝑆𝑛 : 𝑛 ≥ 1, 𝑆1, . . . , 𝑆𝑛 ∈ S}

is a basis for 𝜏𝑋 .

Example A.16. (i) For any set 𝑋 , B ··= {{𝑥} : 𝑥 ∈ 𝑋} is a basis for the discrete topology
on 𝑋 .
(ii) For any set 𝑋 , B ··= {𝑋} is a basis for the trivial topology on 𝑋 .
(iii) If (𝑋, d𝑋 ) is a metric space, the set

B ··= {𝐵d𝑋 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, 𝑟 > 0}

is a basis for 𝜏d𝑋 . Indeed, if 𝑈 ∈ 𝜏d𝑋 , then for any 𝑥 ∈ 𝑈, there is 𝑟(𝑥) > 0 so that
𝐵d𝑋 (𝑥, 𝑟(𝑥)) ⊂ 𝑈. This implies

𝑈 =
⋃
𝑥∈𝑈

𝐵d𝑋 (𝑥, 𝑟(𝑥))

whence B is a basis.
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A priori, if 𝑋 is a set, an arbitrary subset of Ps(𝑋) has no reason to be a basis or
a subbasis for a topology on 𝑋 . There are necessary and sufficient conditions to check
this is the case. Here they are.

Proposition A.17. Let 𝑋 be a set, and B ⊂ Ps(𝑋).
B is a basis for a topology on 𝑋 if and only if the following hold:

(i) 𝑋 =
⋃
𝐵∈B

𝐵.

(ii) For any 𝐵1, 𝐵2 ∈ B, for any 𝑥 ∈ 𝐵1 ∩ 𝐵2, there exists 𝐵 ∈ B so that
𝑥 ∈ 𝐵 ⊂ 𝐵1 ∩ 𝐵2.

In particular, S ⊂ Ps(𝑋) is a subbasis for a topology on 𝑋 if and only if

𝑋 =
⋃
𝑆∈S

𝑆.

Proof. Let us assume first that B ⊂ Ps(𝑋) is a basis for a topology on 𝑋 , i.e. the
collection 𝜏 of all unions of elements of B is a topology on 𝑋 . In particular, 𝑋 ∈ 𝜏, so
𝑋 is a union of elements of B, which establishes (i). To prove (ii), let 𝐵1, 𝐵2 ∈ B and
𝑥 ∈ 𝐵1 ∩ 𝐵2. In particular, 𝐵1, 𝐵2 ∈ 𝜏, which is closed under finite intersections, so
𝐵1∩𝐵2 ∈ 𝜏. Thus 𝐵1∩𝐵2 is a union of elements of 𝐵, and in particular we may choose
𝐵 ∈ B so that 𝑥 ∈ 𝐵 ⊂ 𝐵1 ∩ 𝐵2. This shows (ii).

Conversely, assume that (i) and (ii) holds. We show that the collection 𝜏 consisting
of union of elements of B is a topology on 𝑋 . Firstly, (i) immediately implies that
𝑋 ∈ 𝜏, and by convention ∅ is the empty union, so ∅ ∈ 𝜏. Point (ii) in Definition A.1
is obvious, as a union of union of elements of B is a union of elements of B. We are
thus left to show that 𝜏 is closed under finite intersections. Let then 𝑈1,𝑈2 ∈ 𝜏. By
definition of 𝜏, we may write

𝑈1 =
⋃
𝑖∈𝐼
𝐵𝑖, 𝑈2 =

⋃
𝑗∈𝐽
𝐵′
𝑗

for two arbitrary collections {𝐵𝑖}𝑖∈𝐼, {𝐵′
𝑗
} 𝑗∈𝐽 of elements of B. It follows that

𝑈1 ∩𝑈2 =
⋃

𝑖∈𝐼, 𝑗∈𝐽
(𝐵𝑖 ∩ 𝐵′

𝑗).

Now fix 𝑥 ∈ 𝑈1 ∩𝑈2. Then there is 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 with 𝑥 ∈ 𝐵𝑖 ∩ 𝐵′
𝑗
, and assumption (ii)

ensures there is 𝐵(𝑥) ∈ B so that 𝑥 ∈ 𝐵(𝑥) ⊂ 𝐵𝑖 ∩ 𝐵′
𝑗
. We conclude that

𝑈1 ∩𝑈2 =
⋃

𝑥∈𝑈1∩𝑈2

𝐵(𝑥)
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which exhibits 𝑈1 ∩ 𝑈2 as a union of elements of B, i.e. 𝑈1 ∩ 𝑈2 ∈ 𝜏. Hence 𝜏 is a
topology on 𝑋 , as claimed.

The last statement about subbasis is an immediate consequence of Definition A.15
and the equivalence criteria we just proved for basis. □

When B ⊂ Ps(𝑋) is a basis for a topology on 𝑋 , we denote this topology as 𝜏B, and
we say it is generated by B.

A topological space is said to be second countable if its topology has a countable
basis.

Basis and subbasis are useful to reduce the workload of many checks with topo-
logical spaces. For instance, if S is a subbasis for a topology 𝜏𝑌 on a set 𝑌 , a map
𝑓 : (𝑋, 𝜏𝑋 ) −→ (𝑌, 𝜏𝑌 ) is continuous if and only if 𝑓 −1(𝑆) ∈ 𝜏𝑋 for any 𝑆 ∈ S, as
unions and intersections of sets are preserved by inverse images. Likewise, if B and
B′ are two basis on a set 𝑋 , 𝜏B ⊂ 𝜏B′ if and only if for any 𝑥 ∈ 𝑋 and any 𝐵 ∈ B
containing 𝑥, there is 𝐵′ ∈ B′ so that 𝑥 ∈ 𝐵′ ⊂ 𝐵.

As for continuity, we can also consider local basis, around a fixed point 𝑥 ∈ 𝑋 in a
topological space.

Definition A.18. Let 𝑋 be a topological space and 𝑥 ∈ 𝑋 .
A set B𝑥 of neighbourhoods of 𝑥 is a basis of neighbourhoods for 𝑥 if, for any
neighbourhood 𝑉 of 𝑥, there is 𝐵 ∈ B𝑥 so that 𝑥 ∈ 𝐵 ⊂ 𝑉 .

Let us illustrate this definition in our running examples.

Example A.19. (i) If 𝑋 is a discrete space, then B𝑥 ··= {{𝑥}} is a basis of neighbour-
hoods for 𝑥 ∈ 𝑋 .
(ii) If 𝑋 is a trivial space, B𝑥 ··= {𝑋} is a basis of neighbourhoods for any 𝑥 ∈ 𝑋 .
(iii) If (𝑋, d𝑋 ) is a metric space and 𝑥 ∈ 𝑋 , then

B𝑥 ··= {𝐵d𝑋 (𝑥, 𝑟) : 𝑟 > 0}

is a basis of neighbourhoods for 𝑥 ∈ 𝑋 .

Furthermore, we say that 𝑋 is first countable if any 𝑥 ∈ 𝑋 has a countable basis
of neighbourhoods. As a corollary to Example A.19(iii), we get that any metric space
(𝑋, d𝑋 ) is first countable, because

B𝑥 ··=
{
𝐵d𝑋

(
𝑥,

1
𝑛

)
: 𝑛 ≥ 1

}
is a countable basis of neighbourhoods of 𝑥, for any 𝑥 ∈ 𝑋 .

Let us now turn to the concept of convergence in a topological space, extending the
one we know for sequences of real numbers. Recall that a sequence (𝑥𝑛)𝑛∈ℕ in a set 𝑋
is a map ℕ −→ 𝑋 .
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Definition A.20. Let (𝑋, 𝜏𝑋 ) be a topological space, and 𝑥 ∈ 𝑋 .
A sequence (𝑥𝑛)𝑛∈ℕ converges to 𝑥 in 𝑋 if for all𝑈 ∈ 𝜏𝑋 with 𝑥 ∈ 𝑈, there exists
𝑁 ∈ ℕ so that 𝑛 ≥ 𝑁 =⇒ 𝑥𝑛 ∈ 𝑈.

If a sequence (𝑥𝑛)𝑛∈ℕ converges to a point 𝑥 ∈ 𝑋 , we denote 𝑥𝑛 → 𝑥.
From this definition and the one of a basis of neighbourhoods for a point 𝑥 ∈ 𝑋 , it

follows that if B𝑥 is a basis of neighbourhoods for 𝑥, a sequence (𝑥𝑛)𝑛∈ℕ in 𝑋 converges
to 𝑥 if and only if for any 𝐵 ∈ B𝑥, there exists 𝑁 ∈ ℕ so that 𝑛 ≥ 𝑁 =⇒ 𝑥𝑛 ∈ 𝐵.

Likewise, if the topology 𝜏𝑋 comes from a subbasis S, a sequence (𝑥𝑛)𝑛∈ℕ converges
to a point 𝑥 ∈ 𝑋 if and only if for all 𝑆 ∈ S with 𝑥 ∈ 𝑆 there exists 𝑁 ∈ ℕ so that 𝑥𝑛 ∈ 𝑆
for all 𝑛 ≥ 𝑁.

Example A.21. (i) Suppose that 𝑋 is a discrete space. Letting 𝑥 ∈ 𝑋 and applying
Definition A.20 with the open set𝑈 = {𝑥}, we see that if a sequence (𝑥𝑛)𝑛∈ℕ converges
to 𝑥 ∈ 𝑋 , there exists 𝑁 ∈ ℕ so that 𝑥𝑛 = 𝑥 for all 𝑛 ∈ ℕ, forcing the sequence to be
in fact constant when 𝑛 is large enough. Conversely, such sequences are convergent.
Hence a sequence (𝑥𝑛)𝑛∈ℕ in 𝑋 converges if and only if it is eventually constant.
(ii) In sharp contrast, if 𝑋 is equipped with its trivial topology, the definition of con-
vergence is satisfied for any sequence (𝑥𝑛)𝑛∈ℕ and any point 𝑥 ∈ 𝑋 . Thus all sequences
converge to all points in 𝑋 .
(iii) Suppose that (𝑋, d𝑋 ) is a metric space, and let 𝑥 ∈ 𝑋 . We saw that B𝑥 ··=
{𝐵d𝑋 (𝑥, 𝜀) : 𝜀 > 0} is a basis of neighbourhoods of 𝑥, so applying the above remark,
a sequence (𝑥𝑛)𝑛∈ℕ converges to 𝑥 if and only if for any 𝜀 > 0, there is 𝑁 ∈ ℕ so that
𝑛 ≥ 𝑁 =⇒ d𝑋 (𝑥𝑛, 𝑥) < 𝜀.

Point (ii) in this example illustrates a phenomenon we typically want to avoid, as
in ℝ. We introduce then a new class of spaces.

Definition A.22. A topological space (𝑋, 𝜏𝑋 ) is Hausdorff if for any pair of dis-
tinct points 𝑥, 𝑦 ∈ 𝑋 , there exists𝑈,𝑉 ∈ 𝜏𝑋 with 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and𝑈 ∩ 𝑉 = ∅.

When such open sets exist for two points 𝑥, 𝑦 ∈ 𝑋 , we say they separate 𝑥 and 𝑦.
As from the beginning, we first investigate this property in our favorite examples.

Example A.23. (i) Any discrete space 𝑋 is Hausdorff: for 𝑥 ≠ 𝑦 ∈ 𝑋 , it suffices to
consider𝑈 = {𝑥} and 𝑉 = {𝑦}.
(ii) On the other hand, if 𝑋 carries its trivial topology, then 𝑋 is Hausdorff if and only
if |𝑋 | ≤ 1.
(iv) If (𝑋, d𝑋 ) is a metric space, it is Hausdorff. For 𝑥 ≠ 𝑦 ∈ 𝑋 , consider𝑈 ··= 𝐵d𝑋 (𝑥, 𝜀)
and 𝑉 ··= 𝐵d𝑋 (𝑦, 𝜀), where 𝜀 ··= d𝑋 (𝑥,𝑦)

2 > 0. 𝑈 and 𝑉 are both open, contain 𝑥 and 𝑦 re-
spectively, and are disjoint. This shows in fact that any metrisable space is Hausdorff.

In Hausdorff spaces, there is indeed uniqueness of limits of convergent sequences.
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Proposition A.24. Let 𝑋 be a Hausdorff space.
If (𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 converges to 𝑥 ∈ 𝑋 and to 𝑦 ∈ 𝑋 , then 𝑥 = 𝑦.

Proof. We prove the contrapositive. Assume that 𝑥 ≠ 𝑦 and that 𝑥𝑛 → 𝑥. We show it
cannot converge to 𝑦. By hypothesis, 𝑋 is Hausdorff, and 𝑥 ≠ 𝑦, so we find two open
sets𝑈 and 𝑉 so that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and𝑈 ∩𝑉 = ∅. Since 𝑥𝑛 → 𝑥, there exists 𝑁 ∈ ℕ so
that 𝑛 ≥ 𝑁 =⇒ 𝑥𝑛 ∈ 𝑈. The fact that 𝑈 and 𝑉 are disjoint then implies that 𝑥𝑛 ∉ 𝑉

for all 𝑛 ≥ 𝑁, and in particular (𝑥𝑛)𝑛∈ℕ cannot converge to 𝑦 ∈ 𝑋 . This finishes the
proof. □

We will see below that the converse holds under the additional assumption of first
countability. Before proving this result, we introduce one last concept related to con-
vergent sequences and continuity.

Definition A.25. Let 𝑋,𝑌 be two topological spaces.
A map 𝑓 : 𝑋 −→ 𝑌 is sequentially continuous in 𝑥 ∈ 𝑋 if for any sequence (𝑥𝑛)𝑛∈ℕ
with 𝑥𝑛 → 𝑥 in 𝑋 , 𝑓 (𝑥𝑛) → 𝑓 (𝑥) in 𝑌 .

Moreover, we call 𝑓 sequentially continuous if it is sequentially continuous in 𝑥 ∈ 𝑋
for any 𝑥 ∈ 𝑋 .

The following lemma is a direct consequence of the definitions.

Lemma A.26. Let 𝑋,𝑌 be two topological spaces.
If 𝑓 : 𝑋 −→ 𝑌 is continuous, then 𝑓 is sequentially continuous.

Proof. Suppose that 𝑓 is continuous, and let 𝑥 ∈ 𝑋 . Consider a sequence (𝑥𝑛)𝑛∈ℕ in 𝑋
with 𝑥𝑛 → 𝑥, and an open set 𝑉 ⊂ 𝑌 so that 𝑓 (𝑥) ∈ 𝑉 . It follows from the continuity of
𝑓 that 𝑓 −1(𝑉) is open in 𝑋 . Now 𝑥 ∈ 𝑓 −1(𝑉), so by the definition of convergence, there
exists𝑁 ∈ ℕ so that 𝑥𝑛 ∈ 𝑓 −1(𝑉) for any 𝑛 ≥ 𝑁, and thus 𝑓 (𝑥𝑛) ∈ 𝑉 for any 𝑛 ≥ 𝑁. This
establishes that ( 𝑓 (𝑥𝑛))𝑛∈ℕ converges to 𝑓 (𝑥) in𝑌 , whence 𝑓 is sequentially continuous
in 𝑥. As this holds for any 𝑥 ∈ 𝑋 , 𝑓 is sequentially continuous. □

Here also, it is natural to ask whether the converse holds or not. The answer will
also come from a countability assumption on 𝑋 . To prove this result, we require an
auxiliary lemma.

Lemma A.27. Let 𝑋 be a first countable topological space.
Any 𝑥 ∈ 𝑋 admits a countable and decreasing basis of open neighbourhoods, i.e.
a countable basis of neighbourhoods B𝑥 = {𝐵𝑛}𝑛∈ℕ so that 𝐵𝑛 is open in 𝑋 and
𝐵𝑛+1 ⊂ 𝐵𝑛 for every 𝑛 ∈ ℕ.
Moreover, any sequence (𝑥𝑛)𝑛∈ℕ in 𝑋 with 𝑥𝑛 ∈ 𝐵𝑛 for all 𝑛 ∈ ℕ converges to 𝑥.
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Proof. Let 𝑥 ∈ 𝑋 . As 𝑋 is first countable, choose a countable basis of neighbourhoods
B𝑥 = {𝐵′′

𝑛}𝑛∈ℕ of 𝑥. For any 𝑛 ∈ ℕ, there is a open set 𝐵′
𝑛 ⊂ 𝐵′′

𝑛 containing 𝑥, and thus
𝐵𝑛 ··= 𝐵′

1 ∩ · · · ∩ 𝐵′
𝑛, 𝑛 ∈ ℕ, provides a countable basis of open neighbourhoods of 𝑥

which is decreasing.
For the second claim, fix a sequence (𝑥𝑛)𝑛∈ℕ with 𝑥𝑛 ∈ 𝐵𝑛 for any 𝑛 ∈ ℕ. As we

just proved, we can assume that the sequence {𝐵𝑛}𝑛∈ℕ is decreasing, and thus for any
𝑚 ∈ ℕ, we see that 𝑥𝑛 ∈ 𝐵𝑛 ⊂ 𝐵𝑚 for all 𝑛 ≥ 𝑚. By the remark following Definition
A.20 we conclude that 𝑥𝑛 → 𝑥 as 𝑛→ ∞, and we are done. □

Without any delay, let us provide answers to the two previous questions.

Theorem A.28. Let 𝑋 be a first countable topological space, and 𝑌 be a topo-
logical space. Then

(i) 𝑋 is Hausdorff if and only if any convergent sequence in 𝑋 has a unique
limit.

(ii) A map 𝑓 : 𝑋 −→ 𝑌 is continuous if and only if it is sequentially continuous.

Proof. (i) One direction is Proposition A.24. For the converse, assume that 𝑋 is not
Hausdorff. This means we may find two points 𝑥 ≠ 𝑦 in 𝑋 so that for any pair of
open sets 𝑈,𝑉 with 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 , 𝑈 ∩ 𝑉 ≠ ∅. As 𝑋 is first countable, Lemma
A.27 ensures we can pick two countable decreasing bases of open neighbourhoods B𝑥 =
{𝐵𝑛(𝑥)}𝑛∈ℕ, B𝑦 = {𝐵𝑛(𝑦)}𝑛∈ℕ for 𝑥 and 𝑦 respectively. Then 𝐵𝑛(𝑥) ∩ 𝐵𝑛(𝑦) ≠ ∅ for all
𝑛 ∈ ℕ, so choose 𝑥𝑛 ∈ 𝐵𝑛(𝑥) ∩ 𝐵𝑛(𝑦), 𝑛 ∈ ℕ. By Lemma A.27, 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦, and
this concludes the proof of (i).
(ii) One direction is Lemma A.26, and for the converse we proceed as in (i). Assume
that 𝑓 is not continuous. By definition, we find an open set 𝑈 ⊂ 𝑌 such that 𝑓 −1(𝑈)
is not open in 𝑋 . This implies we may find 𝑥 ∈ 𝑓 −1(𝑈) with the property that for
any neighbourhood 𝑉 of 𝑥, 𝑉 ⊄ 𝑓 −1(𝑈). In particular, for B𝑥 = {𝐵𝑛}𝑛∈ℕ a countable
decreasing basis of open neighbourhoods of 𝑥, we must have 𝐵𝑛 ⊄ 𝑓 −1(𝑈), and we can
then choose 𝑥𝑛 ∈ 𝐵𝑛 \ 𝑓 −1(𝑈), for any 𝑛 ∈ ℕ. By Lemma A.27, 𝑥𝑛 → 𝑥, but we do not
have 𝑓 (𝑥𝑛) → 𝑓 (𝑥). This shows that 𝑓 is not sequentially continuous, and finishes the
proof of the theorem. □

Let us now focus on the notion of compactness for topological spaces. To formulate
the definition, we need a terminology: if 𝑋 is a topological space, an open covering of
𝑋 is a family {𝑈𝑖}𝑖∈𝐼 of open sets in 𝑋 so that

𝑋 =
⋃
𝑖∈𝐼
𝑈𝑖.

We say an open covering {𝑈𝑖}𝑖∈𝐼 admits a finite subcovering if there exists a finite
subset 𝐽 ⊂ 𝐼 so that

𝑋 =
⋃
𝑗∈𝐽
𝑈 𝑗 .
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Definition A.29. A topological space 𝑋 is compact if any open covering of 𝑋
admits a finite subcovering.

If 𝑌 ⊂ 𝑋 is endowed with the topology induced by that of 𝑋 , it is compact if for any
family {𝑈𝑖}𝑖∈𝐼 of open sets in 𝑋 so that 𝑌 ⊂ ⋃

𝑖∈𝐼𝑈𝑖, there exists 𝐽 ⊂ 𝐼 finite so that
𝑌 ⊂ ⋃

𝑗∈𝐽𝑈 𝑗.

Example A.30. (i) If 𝑋 has only a finite number of open sets, then 𝑋 is compact. In
particular, if 𝑋 is finite, any topology on 𝑋 has at most |𝜏disc | = |Ps(𝑋) | = 2|𝑋 | open
sets, so 𝑋 is compact for any of its topologies.
(ii) It follows from (i) that any set 𝑋 with its trivial topology {∅, 𝑋} is compact.
(iii) On the other hand, a discrete space 𝑋 is compact if and only if it is finite. Indeed,
if it is finite, it is compact by (i). If it is infinite, {{𝑥} : 𝑥 ∈ 𝑋} is an open covering of 𝑋
without any finite subcovering.
(iv) The space 𝑋 = ℝwith its usual topology is not compact, since {(𝑛−1, 𝑛+1) : 𝑛 ∈ ℤ}
is an open covering of ℝ without any finite subcovering.

We provide now a list of general properties of compactness.

Proposition A.31. Let 𝑋 be a compact topological space, and let 𝑌 ⊂ 𝑋 . If 𝑌 is
closed in 𝑋 , then 𝑌 is compact.

Proof. Consider a family {𝑈𝑖}𝑖∈𝐼 of open sets of 𝑋 with

𝑌 ⊂
⋃
𝑖∈𝐼
𝑈𝑖.

As 𝑌 is closed in 𝑋 , 𝑋 \ 𝑌 is open in 𝑋 , so {𝑋 \ 𝑌} ∪ {𝑈𝑖}𝑖∈𝐼 is an open covering of 𝑋 .
Since 𝑋 is compact, we find 𝑖1, . . . , 𝑖𝑚 ∈ 𝐼 so that

𝑋 ⊂ (𝑋 \𝑌) ∪𝑈𝑖1 ∪ · · · ∪𝑈𝑖𝑚 .

Thus we conclude that 𝑌 ⊂ 𝑈𝑖1 ∪ · · · ∪𝑈𝑖𝑚 , and 𝑌 is compact. □

The next proposition shows that the converse holds if the ambient space is Haus-
dorff.

Proposition A.32. Let 𝑋 be a topological Hausdorff space, and let 𝑌 ⊂ 𝑋 . If 𝑌
is compact, then 𝑌 is closed in 𝑋 .
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Proof. Let 𝑥 ∈ 𝑋 \ 𝑌 . For each 𝑦 ∈ 𝑌 , 𝑥 ≠ 𝑦, and since 𝑋 is Hausdorff, we find two
open sets𝑈𝑦, 𝑉𝑦 of 𝑋 so that 𝑥 ∈ 𝑈𝑦, 𝑦 ∈ 𝑉𝑦 and𝑈𝑦 ∩ 𝑉𝑦 = ∅. The collection {𝑉𝑦}𝑦∈𝑌 is
an open covering of 𝑌 , which is compact, and we therefore find 𝑦1, . . . , 𝑦𝑚 ∈ 𝑌 so that

𝑌 ⊂ 𝑉𝑦1 ∪ · · · ∪ 𝑉𝑦𝑚 .

Consider now𝑈 ··= 𝑈𝑦1 ∩ · · · ∩𝑈𝑦𝑚 . It is an open set in 𝑋 as an intersection of finitely
many open sets in 𝑋 . It contains 𝑥 as 𝑥 ∈ 𝑈𝑦𝑖 , for all 𝑖 = 1, . . . , 𝑚. Lastly, one has

𝑈 ∩𝑌 = 𝑈 ∩ (𝑉𝑦1 ∪ · · · ∪ 𝑉𝑦𝑚) =
𝑚⋃
𝑖=1

(𝑈 ∩ 𝑉𝑦𝑖) ⊂
𝑚⋃
𝑖=1

(𝑈𝑦𝑖 ∩ 𝑉𝑦𝑖) = ∅

using that 𝑈𝑦𝑖 ∩ 𝑉𝑦𝑖 = ∅ for all 𝑖 = 1, . . . , 𝑚. Hence 𝑈 ⊂ 𝑋 \ 𝑌 . Thus 𝑋 \ 𝑌 is a
neighbourhood of any of its elements. This implies it is an open set in 𝑋 , and 𝑌 is
therefore closed in 𝑋 . □

The result to come ensures that compact spaces enjoy the finite intersection prop-
erty.

Proposition A.33. Let 𝑋 be a topological space. The following are equivalent.

(i) 𝑋 is compact.

(ii) If {𝐹𝑖}𝑖∈𝐼 is a collection of closed subsets of 𝑋 so that
⋂
𝑖∈𝐼 𝐹𝑖 = ∅, then there

exists a finite subset 𝐽 ⊂ 𝐼 so that
⋂
𝑗∈𝐽 𝐹 𝑗 = ∅.

(iii) If {𝐹𝑖}𝑖∈𝐼 is a collection of closed subsets of 𝑋 so that
⋂
𝑗∈𝐽 𝐹 𝑗 ≠ ∅ for any

finite subset 𝐽 ⊂ 𝐼, then
⋂
𝑖∈𝐼 𝐹𝑖 ≠ ∅.

Proof. (ii) ⇐⇒ (iii) is clear since one statement is the contrapositive of the other. We
are thus left to prove (i) ⇐⇒ (ii).
(i) =⇒ (ii) : Suppose 𝑋 compact, and take {𝐹𝑖}𝑖∈𝐼 a collection of closed subsets of 𝑋 so
that

⋂
𝑖∈𝐼 𝐹𝑖 = ∅. For all 𝑖 ∈ 𝐼, let 𝑈𝑖 = 𝑋 \ 𝐹𝑖, which is open in 𝑋 since 𝐹𝑖 is closed.

One has then
𝑋 = ∅𝑐 =

(⋂
𝑖∈𝐼
𝐹𝑖

) 𝑐
=
⋃
𝑖∈𝐼
𝑈𝑖

and since 𝑋 is compact, there exists 𝐽 ⊂ 𝐼 finite such that 𝑋 =
⋃
𝑗∈𝐽𝑈 𝑗. But then

∅ = 𝑋 𝑐 =

(⋃
𝑗∈𝐽
𝑈 𝑗

) 𝑐
=
⋂
𝑗∈𝐽
𝑈𝑐
𝑗
=
⋂
𝑗∈𝐽
𝐹 𝑗

which establishes (ii).
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(ii) =⇒ (i) : Take {𝑈𝑖}𝑖∈𝐼 an open covering of 𝑋 , so 𝑋 =
⋃
𝑖∈𝐼𝑈𝑖. This implies ∅ =⋂

𝑖∈𝐼𝑈
𝑐
𝑖
, and 𝑈𝑐

𝑖
is closed for all 𝑖 ∈ 𝐼. By hypothesis, there exists 𝐽 ⊂ 𝐼 finite so that

∅ =
⋂
𝑗∈𝐽𝑈

𝑐
𝑗
, and we get

𝑋 =
⋃
𝑗∈𝐽
𝑈 𝑗

which means 𝑋 is compact, as desired. □

From the following theorem one can prove that compactness is a topological invari-
ant, i.e. is preserved by homeomorphisms.

Theorem A.34. Let 𝑋 be a compact topological space, and𝑌 a topological space.
If 𝑓 : 𝑋 −→ 𝑌 is continuous, then 𝑓 (𝑋) ⊂ 𝑌 is compact.

Proof. Let {𝑈𝑖}𝑖∈𝐼 be an open covering of 𝑓 (𝑋) ⊂ 𝑌 , i.e. a family of open subsets of 𝑌
so that

𝑓 (𝑋) ⊂
⋃
𝑖∈𝐼
𝑈𝑖.

As 𝑓 is continuous, 𝑓 −1(𝑈𝑖) is open in 𝑋 for all 𝑖 ∈ 𝐼. Moreover we have the equalities

𝑋 = 𝑓 −1( 𝑓 (𝑋)) ⊂ 𝑓 −1
(⋃
𝑖∈𝐼
𝑈𝑖

)
=
⋃
𝑖∈𝐼
𝑓 −1(𝑈𝑖)

so {𝑓 −1(𝑈𝑖)}𝑖∈𝐼 is an open covering of 𝑋 . By compactness of 𝑋 , there exists 𝑖1, . . . , 𝑖𝑚 ∈
𝐼 so that

𝑋 = 𝑓 −1(𝑈𝑖1) ∪ · · · ∪ 𝑓 −1(𝑈𝑖𝑚)
and this implies 𝑓 (𝑋) ⊂ 𝑈𝑖1 ∪ · · · ∪𝑈𝑖𝑚 . Hence 𝑓 (𝑋) is compact, as announced. □

We close this part by defining and studying sequential compactness, which is closely
related to compactness. For this, recall that if (𝑥𝑛)𝑛∈ℕ is a sequence in a topological
space 𝑋 , a subsequence of (𝑥𝑛)𝑛∈ℕ is a sequence of the form (𝑥𝜑(𝑛))𝑛∈ℕ where 𝜑 : ℕ −→
ℕ is a strictly increasing map.

Definition A.35. A topological space 𝑋 is sequentially compact if any sequence
in 𝑋 has a convergent subsequence.

Example A.36. (i) A finite space 𝑋 is sequentially compact. Indeed, if (𝑥𝑛)𝑛∈ℕ is a se-
quence in 𝑋 and |𝑋 | < ∞, it must contain a constant subsequence, which is convergent
for any topology on 𝑋 .
(ii) A discrete space 𝑋 is sequentially compact if and only if it is finite. Indeed if 𝑋 is
finite, it is sequentially compact by (i). Conversely, if 𝑋 is infinite, there is a sequence
in 𝑋 consisting of distinct elements, and such a sequence cannot have a convergent

137



Master thesis General topology

subsequence, because convergent sequences in a discrete space are eventually constant
(by Example A.21(i)).
(iii) The space 𝑋 = ℝ with its standard topology is not sequentially compact, as for
instance the sequence 𝑥𝑛 = 𝑛, 𝑛 ∈ ℕ, does not have a convergent subsequence.

Here is our main result on sequential compactness.

Theorem A.37. If 𝑋 is compact and first countable, then 𝑋 is sequentially com-
pact.

Proof. Let us assume that 𝑋 is first countable and compact. Fix a sequence (𝑥𝑛)𝑛∈ℕ
in 𝑋 . We first claim that (𝑥𝑛)𝑛∈ℕ has an accumulation point, i.e. there exists 𝑦 ∈ 𝑋

so that for any open set 𝑈 ⊂ 𝑋 with 𝑦 ∈ 𝑈, 𝑈 contains infinitely many terms of the
sequence (𝑥𝑛)𝑛∈ℕ.

We prove this claim by contradiction. Suppose that for any 𝑦 ∈ 𝑋 , there is an
open set 𝑈𝑦 ⊂ 𝑋 and an integer 𝑁𝑦 so that 𝑦 ∈ 𝑈𝑦 and 𝑥𝑛 ∉ 𝑈𝑦 for all 𝑛 ≥ 𝑁𝑦.
The family {𝑈𝑦}𝑦∈𝑋 forms an open covering of 𝑋 , which is compact, and we thus find
𝑦1, . . . , 𝑦𝑚 ∈ 𝑋 with 𝑋 = 𝑈𝑦1 ∪ · · · ∪𝑈𝑦𝑚 . By assumption, for each 𝑖 = 1, . . . , 𝑛,𝑈𝑦𝑖 can
contain only finitely many terms of the sequence (𝑥𝑛)𝑛∈ℕ, which has thus only finitely
many terms, a contradiction. Hence (𝑥𝑛)𝑛∈ℕ has an accumulation point 𝑦 ∈ 𝑋 .

As 𝑋 is first countable, we can choose a countable basis of neighbourhoods B𝑦 =

{𝐵𝑛}𝑛∈ℕ of 𝑦, and we may assume 𝐵𝑛 to be open for all 𝑛 ∈ ℕ and the sequence to be
decreasing, by Lemma A.27. As 𝑦 is an accumulation point for (𝑥𝑛)𝑛∈ℕ, 𝐵𝑛 contains
infinitely many terms of the sequence, for all 𝑛 ∈ ℕ. We can then choose (𝑥𝜑(𝑛))𝑛∈ℕ a
subsequence of (𝑥𝑛)𝑛∈ℕ with 𝑥𝜑(𝑛) ∈ 𝐵𝑛 for all 𝑛 ∈ ℕ. By Lemma A.27, this sequence
converges to 𝑦 ∈ 𝑋 , which concludes the proof of the theorem. □

As metric spaces are first countable, we deduce from this result that compact metric
spaces are sequentially compact.

To end this appendix, we describe two useful methods to create topologies, on a set
or on a product of sets.

The first method is the following: let 𝑋 be a set, and let F ··= {𝑓 : 𝑋 −→ 𝑌𝑓 } be
a family of applications with source 𝑋 . Assume that 𝑌𝑓 is a topological space for any
𝑓 ∈ F . We define the initial topology 𝜎(𝑋,F ) on 𝑋 to be the topology generated by
the subbasis

BF ··= {𝑓 −1(𝑈) : 𝑓 ∈ F , 𝑈 ⊂ 𝑌𝑓 open}.
From this definition, it appears that 𝜎(𝑋, F ) is the smallest topology on 𝑋 so that
each 𝑓 ∈ F is continuous. This observation provides a characterization to describe
continuous maps with target space 𝑋 .

Proposition A.38. Let 𝑋 be a set endowed with an initial topology 𝜎(𝑋,F ).
Let 𝑍 be a topological space. Then a map 𝑔 : 𝑍 −→ 𝑋 is continuous if and only
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if 𝑓 ◦ 𝑔 : 𝑍 −→ 𝑌𝑓 is continuous for any 𝑓 ∈ F .

Proof. If 𝑔 is continuous, 𝑓 ◦ 𝑔 is continuous for any 𝑓 ∈ F as a composition of con-
tinuous maps (by Example A.4(iv)). Conversely, suppose that 𝑓 ◦ 𝑔 is continous for all
𝑓 ∈ F . It is enough to prove that 𝑔−1(𝑉) is open in 𝑍 for any 𝑉 ∈ BF . Fix then such a
𝑉 ∈ BF , that we write as 𝑉 = 𝑓 −1(𝑈) for some 𝑓 ∈ F and some open set𝑈 in 𝑌𝑓 . Then

𝑔−1(𝑉) = 𝑔−1( 𝑓 −1(𝑈)) = ( 𝑓 ◦ 𝑔)−1(𝑈)

and since𝑈 is open in 𝑌𝑓 and 𝑓 ◦ 𝑔 is continuous by assumption, it follows that 𝑔−1(𝑉)
is open in 𝑍, concluding the proof. □

Another advantage of initial topologies is the description of convergence of se-
quences.

Proposition A.39. Let 𝑋 be a set endowed with an initial topology 𝜎(𝑋,F ).
Let (𝑥𝑛)𝑛∈ℕ be a sequence in 𝑋 and 𝑥 ∈ 𝑋 . Then 𝑥𝑛 → 𝑥 as 𝑛→ ∞ if and only if
𝑓 (𝑥𝑛) → 𝑓 (𝑥) as 𝑛→ ∞, for any 𝑓 ∈ F .

Proof. Suppose first that 𝑥𝑛 → 𝑥. Each 𝑓 ∈ F is continuous, in particular sequentially
continuous by Lemma A.26, whence 𝑓 (𝑥𝑛) → 𝑓 (𝑥). Conversely, suppose 𝑓 (𝑥𝑛) → 𝑓 (𝑥).
Fix 𝑉 ∈ BF with 𝑥 ∈ 𝑉 , and write it 𝑉 = 𝑓 −1(𝑈) for some 𝑓 ∈ F and 𝑈 ⊂ 𝑌𝑓 open.
As 𝑥 ∈ 𝑉 , we have that 𝑓 (𝑥) ∈ 𝑈, and since 𝑓 (𝑥𝑛) → 𝑓 (𝑥), there exists 𝑁 ∈ ℕ so that
𝑓 (𝑥𝑛) ∈ 𝑈 for all 𝑛 ≥ 𝑁. Hence 𝑥𝑛 ∈ 𝑓 −1(𝑈) = 𝑉 for all 𝑛 ≥ 𝑁, and by the remark
following Definition A.20, this implies that 𝑥𝑛 → 𝑥, as announced. We are done. □

For the second method, fix an arbitrary collection (𝑋𝑖)𝑖∈𝐼 of non-empty sets. Recall
that the product set

∏
𝑖∈𝐼 𝑋𝑖 is the set of all collections of the form (𝑥𝑖)𝑖∈𝐼 with 𝑥𝑖 ∈ 𝑋𝑖

for every 𝑖 ∈ 𝐼. More precisely∏
𝑖∈𝐼

𝑋𝑖 ··=
{
𝑥 : 𝐼 −→

⋃
𝑖∈𝐼
𝑋𝑖 : 𝑥(𝑖) ∈ 𝑋𝑖 for any 𝑖 ∈ 𝐼

}
.

Assume that 𝑋𝑖 is endowed with a topology 𝜏𝑋𝑖 , for any 𝑖 ∈ 𝐼. Consider then the subset
S ⊂ Ps(

∏
𝑖∈𝐼 𝑋𝑖) defined as

S ··=
{
𝜋−1
𝑗 (𝑈 𝑗) ⊂

∏
𝑖∈𝐼

𝑋𝑖 : 𝑗 ∈ 𝐼, 𝑈 𝑗 ∈ 𝜏𝑋 𝑗
}

where 𝜋 𝑗 :
∏
𝑖∈𝐼 𝑋𝑖 −→ 𝑋 𝑗 is the natural projection on the 𝑗−th component of the

product. By definition, elements of S are of the form

𝜋−1
𝑗 (𝑈 𝑗) = 𝑈 𝑗 ×

∏
𝑖∈𝐼\{ 𝑗}

𝑋𝑖

139



Master thesis General topology

with 𝑗 ∈ 𝐼 and 𝑈 𝑗 ∈ 𝜏𝑋 𝑗 . The collection S satisfies the condition of Proposition A.17,
and thus is a subbasis for a topology on

∏
𝑖∈𝐼 𝑋𝑖. The corresponding topology is called

the product topology on
∏
𝑖∈𝐼 𝑋𝑖, and the corresponding basis is

B =

{∏
𝑗∈𝐽
𝑈 𝑗 ×

∏
𝑖∈𝐼\𝐽

𝑋𝑖 : 𝐽 ⊂ 𝐼 finite, 𝑈 𝑗 ∈ 𝜏𝑋 𝑗 for any 𝑗 ∈ 𝐽
}
.

From this construction, we see that the product topology is the smallest topology on∏
𝑖∈𝐼 𝑋𝑖 so that any projection 𝜋 𝑗 is continuous.

Proposition A.40. Let (𝑋𝑖)𝑖∈𝐼 be a collection of topological spaces.
For any topological space 𝑋 and any family of maps {𝑓𝑖 : 𝑋 −→ 𝑋𝑖 : 𝑖 ∈ 𝐼}, there
exists a unique map 𝑓 : 𝑋 −→ ∏

𝑖∈𝐼 𝑋𝑖 so that 𝜋𝑖◦ 𝑓 = 𝑓𝑖 for every 𝑖 ∈ 𝐼. Moreover,
𝑓 is continuous if and only if 𝑓𝑖 is continuous for every 𝑖 ∈ 𝐼.

Proof. For the first statement, it suffices to set

𝑓 : 𝑋 −→
∏
𝑖∈𝐼

𝑋𝑖

𝑥 ↦−→ ( 𝑓𝑖(𝑥))𝑖∈𝐼 .

For the second statement, if 𝑓 is continuous, then 𝑓𝑖 = 𝜋𝑖 ◦ 𝑓 is continuous for every
𝑖 ∈ 𝐼, as the composition of continuous maps is a continous map. Conversely, suppose
that 𝑓𝑖 is continuous for every 𝑖 ∈ 𝐼. Let𝑉 be an element of the subbasis for the product
topology on

∏
𝑖∈𝐼 𝑋𝑖. By definition, 𝑉 takes the form 𝑉 = 𝜋−1

𝑗
(𝑈 𝑗) where 𝑗 ∈ 𝐼 and 𝑈 𝑗

is open in 𝑋 𝑗. Then

𝑓 −1(𝑉) = 𝑓 −1(𝜋−1
𝑗 (𝑈 𝑗)) = (𝜋 𝑗 ◦ 𝑓 )−1(𝑈 𝑗)

and as 𝜋 𝑗 ◦ 𝑓 is continuous and 𝑈 𝑗 is open in 𝑋 𝑗, we conclude that 𝑓 −1(𝑉) is open in
𝑋 , whence 𝑓 is continuous. This achieves the proof. □

Let 𝐼 be a set. When 𝑋𝑖 = 𝑋 for any 𝑖 ∈ 𝐼, the product
∏
𝑖∈𝐼 𝑋𝑖 is denoted 𝑋 𝐼 and

is merely the set of functions from 𝐼 to 𝑋 . We can easily describe the convergence in
such a space for the product topology.

Proposition A.41. Let 𝐼 be a set and let 𝑋 be a topological space. A sequence
( 𝑓𝑛)𝑛∈ℕ converges to 𝑓 in 𝑋 𝐼 if and only if ( 𝑓𝑛(𝑖))𝑖∈𝐼 converges to 𝑓 (𝑖) in 𝑋 for any
𝑖 ∈ 𝐼.

Proof. We saw earlier that convergence of sequences in a space can be formulated
using only elements of the subbasis of the topology on the space. An element of the
subbasis of the product topology on 𝑋 𝐼 has the form 𝜋−1

𝑖
(𝑈) for some 𝑖 ∈ 𝐼 and some
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open subset𝑈 ⊂ 𝑋 , and as usual 𝜋𝑖 is the natural projection on the 𝑖−th copy of 𝑋 in
the product. Then ( 𝑓𝑛)𝑛∈ℕ converges to 𝑓 if and only if for every 𝑖 ∈ 𝐼 and open subset
𝑈 ⊂ 𝑋 so that 𝑓 ∈ 𝜋−1

𝑖
(𝑈), there is 𝑁 ∈ ℕ so that 𝑓𝑛 ∈ 𝜋−1

𝑖
(𝑈), i.e. if and only if for

every 𝑖 ∈ 𝐼 and open subset 𝑈 ⊂ 𝑋 so that 𝑓 (𝑖) ∈ 𝑈, there is 𝑁 ∈ ℕ so that 𝑓𝑛(𝑖) ∈ 𝑈.
This last condition precisely means that the sequence ( 𝑓𝑛(𝑖))𝑛∈ℕ converges to 𝑓 (𝑖) in
𝑋 , for every 𝑖 ∈ 𝐼. This proves the proposition. □

Because of this description of the convergence in 𝑋 𝐼, one often refers to the product
topology on 𝑋 𝐼 as the topology of pointwise convergence.

An important feature of the product topology is that it preserves the Hausdorff
property.

Proposition A.42. Let 𝐼 be a set and (𝑋𝑖)𝑖∈𝐼 a collection of topological spaces.
Then

∏
𝑖∈𝐼 𝑋𝑖 is Hausdorff if and only if 𝑋𝑖 is Hausdorff, for all 𝑖 ∈ 𝐼.

Proof. If the product is Hausdorff and 𝑗 ∈ 𝐼, write 𝑋 𝑗 = 𝜋 𝑗 (
∏
𝑖∈𝐼 𝑋𝑖) and use that the

Hausdorff property is preserved by continuous maps to see that 𝑋 𝑗 is Hausdorff.
Conversely, assume that each 𝑋𝑖 is Hausdorff. Let (𝑥𝑖)𝑖∈𝐼, (𝑦𝑖)𝑖∈𝐼 ∈

∏
𝑖∈𝐼 𝑋𝑖 be two

distinct elements. Then, there is 𝑗 ∈ 𝐼 so that 𝑥 𝑗 ≠ 𝑦 𝑗 ∈ 𝑋 𝑗, and as the latter is
Hausdorff, we find 𝑈 𝑗, 𝑉 𝑗 ⊂ 𝑋 𝑗 two disjoint open sets with 𝑥 𝑗 ∈ 𝑈 𝑗, 𝑦 𝑗 ∈ 𝑉 𝑗. Now the
sets

𝑈 𝑗 ×
∏

𝑖∈𝐼\{ 𝑗}
𝑋𝑖, 𝑉 𝑗 ×

∏
𝑖∈𝐼\{ 𝑗}

𝑋𝑖

are open in
∏
𝑖∈𝐼 𝑋𝑖 by definition of the product topology, disjoint since 𝑈 𝑗 ∩ 𝑉 𝑗 = ∅,

and the first one contains (𝑥𝑖)𝑖∈𝐼, the second one contains (𝑦𝑖)𝑖∈𝐼. This proves that the
product is Hausdorff and finishes the proof. □

Another particularly important property of the product topology is that it preserves
compactness:

Tychonoff’s theorem. Let (𝑋𝑖)𝑖∈𝐼 be a collection of topological spaces.
Then

∏
𝑖∈𝐼 𝑋𝑖 is compact if and only if 𝑋𝑖 is compact for every 𝑖 ∈ 𝐼.

Clearly, if the product is compact, each 𝑋𝑖 must be compact, applying Theorem A.34
with 𝑓 = 𝜋𝑖. The heart of the theorem really lies in the converse statement. We will
not present a proof here, as it goes far beyond the aim of this appendix, and we refer
to [3, theorem A.2.1].
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B. Amenability of groups

The aim of this appendix is to provide the reader with basic definitions and results
about amenability for groups. Those will be used in our study of unitarisability in
Chapter 3.

We start by recalling several equivalent ways of defining amenability for a group,
without proofs. Then we establish various stability properties for the class of amenable
groups, that we illustrate through numerous examples. Along the way we also derive
the non-amenability of non-abelian free groups.

The basic concept required to formulate amenability is that of means.

Definition B.1. Let 𝑋 be a set.
A mean on 𝑋 is a map 𝜇 : Ps(𝑋) −→ [0, 1] so that 𝜇(𝑋) = 1 and

𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵)

for all disjoint subsets 𝐴, 𝐵 ⊂ 𝑋 .

With words, a mean on a set 𝑋 is a finitely additive probability measure.

Example B.2. Suppose 𝑋 ≠ ∅ and fix 𝑥 ∈ 𝑋 . The Dirac mass at 𝑥 is defined as

𝛿𝑥 (𝐴) ··=
{

1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴

for all 𝐴 ∈ Ps(𝑋). Directly, 𝛿𝑥 ∈ M(𝑋).

We denote M(𝑋) the set of means on 𝑋 . It is a convex subset of the ℝ−vector space
ℝP(𝑋), as if 𝜇, 𝜂 ∈ M(𝑋) and 𝑡 ∈ [0, 1], then ((1− 𝑡)𝜇+ 𝑡𝜂) (𝑋) = (1− 𝑡)𝜇(𝑋) + 𝑡𝜂(𝑋) =
1 − 𝑡 + 𝑡 = 1 and

((1 − 𝑡)𝜇 + 𝑡𝜂) (𝐴 ⊔ 𝐵) = (1 − 𝑡)𝜇(𝐴 ⊔ 𝐵) + 𝑡𝜂(𝐴 ⊔ 𝐵)
= (1 − 𝑡)𝜇(𝐴) + 𝑡𝜂(𝐴) + (1 − 𝑡)𝜇(𝐵) + 𝑡𝜂(𝐵)
= ((1 − 𝑡)𝜇 + 𝑡𝜂) (𝐴) + ((1 − 𝑡)𝜇 + 𝑡𝜂) (𝐵)

for all disjoint subsets 𝐴, 𝐵 ⊂ 𝑋 . Thus (1− 𝑡)𝜇+ 𝑡𝜂 ∈ M(𝑋). From there, an induction
proves that any convex combination of means on 𝑋 is a mean on 𝑋 .

As for probability measures, there are several properties inherited from the defi-
nition. If 𝜇 is as in Definition B.1, it satisfies

(i) 𝜇(∅) = 0.

(ii) 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) − 𝜇(𝐴 ∩ 𝐵), for all 𝐴, 𝐵 ⊂ 𝑋 .

(iii) 𝜇

( 𝑛⊔
𝑖=1

𝐴𝑖

)
=

𝑛∑︁
𝑖=1

𝜇(𝐴𝑖) for all 𝐴1, . . . , 𝐴𝑛 ⊂ 𝑋 .
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(iv) 𝜇(𝐴) ≤ 𝜇(𝐵) for all 𝐴, 𝐵 ⊂ 𝑋 such that 𝐴 ⊂ 𝐵.

Observe that the inclusion M(𝑋) ⊂ [0, 1]Ps (𝑋) naturally endows M(𝑋) with a
topology, induced by the product topology on [0, 1]Ps (𝑋). This is the topology of point-
wise convergence, by Proposition A.41, i.e. a sequence (𝜇𝑛)𝑛∈ℕ ⊂ M(𝑋) converges to
𝜇 ∈ M(𝑋) if and only if

𝜇𝑛(𝐴) −→ 𝜇(𝐴)
as 𝑛→ ∞, for all 𝐴 ⊂ 𝑋 .

The following fact will be essential for our purposes.

Lemma B.3. Let 𝑋 be a set. Then M(𝑋) is compact.

Proof. A subbasis for the topology of M(𝑋) is given by{
O ×

∏
Ps (𝑋)\{𝐴}

ℝ : O ⊂ ℝ open, 𝐴 ⊂ 𝑋

}
.

The complement of a set of this form is (ℝ \ O) ×
∏

Ps (𝑋)\{𝐴}
ℝ. Hence we can construct

closed subsets of ℝPs (𝑋) by fixing finitely many 𝐴1, . . . , 𝐴𝑛 ∈ Ps(𝑋), choosing any
closed subset C ⊂ ℝ{𝐴1,...,𝐴𝑛} ≃ ℝ𝑛, and considering

C ×
∏

Ps (𝑋)\{𝐴1,...,𝐴𝑛}
ℝ.

Now we turn to the proof of the lemma. Indeed, note to begin that in fact

M(𝑋) ⊂ [0, 1]Ps (𝑋)

and the latter is compact by Tychonoff’s theorem. By Proposition A.31 it is thus enough
to prove that M(𝑋) is closed in [0, 1]Ps (𝑋). Expanding the definition, we have

M(𝑋) = {𝜇 ∈ [0, 1]Ps (𝑋) : 𝜇(𝑋) = 1, 𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) ∀𝐴, 𝐵 ∈ Ps(𝑋)}
= {𝜇 ∈ [0, 1]Ps (𝑋) : 𝜇(𝑋) = 1}

∩
⋂

𝐴,𝐵∈Ps (𝑋), 𝐴∩𝐵=∅

{
𝜇 ∈ [0, 1]Ps (𝑋) : 𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵)

}
.

All sets in this writing of M(𝑋) are closed by the observation above: the first one
corresponds to the choice 𝐴1 = 𝑋 , 𝐶 = {1}. The second one, for 𝐴 and 𝐵 fixed with
𝐴 ∩ 𝐵 = ∅, corresponds to 𝐴1 = 𝐴, 𝐴2 = 𝐵, 𝐴3 = 𝐴 ⊔ 𝐵 and 𝐶 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 :
𝑥 + 𝑦 = 𝑧}. Therefore M(𝑋) is closed in [0, 1]Ps (𝑋) as an intersection of closed sets.
This concludes our proof. □

The first formal definition of amenability was proposed by Von Neumann in 1929,
after its study of the Banach-Tarski paradox.
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Definition B.4. A group 𝐺 is amenable if there exists a mean on 𝐺 so that
𝜇(𝑔𝐴) = 𝜇(𝐴) for all 𝐴 ⊂ 𝐺 and 𝑔 ∈ 𝐺.

Here the notation 𝑔𝐴 stands for the translate of 𝐴 under the action of 𝐺 on itself
by left multiplication: 𝑔𝐴 ··= {𝑔𝑎 : 𝑎 ∈ 𝐴}.

When 𝜇(𝑔𝐴) = 𝜇(𝐴) for all 𝑔 ∈ 𝐺 and 𝐴 ⊂ 𝐺, we say that 𝜇 is 𝐺−invariant. With
this terminology, a group 𝐺 is amenable if and only if it carries a 𝐺−invariant mean.

Example B.5. Any finite group 𝐺 is amenable, since the normalized counting mea-
sure, defined as 𝜇(𝐴) ··= |𝐴|

|𝐺 | for any 𝐴 ⊂ 𝐺, is a 𝐺−invariant mean.

Going beyond finite groups, it is in general not possible to provide an exact formula
for an invariant mean on a group. We must then proceed differently, and a fruitful idea
is to take advantage of the compactness of M(𝐺) and consider accumulation points of
well-chosen sequences. To that end, the next remark is crucial.

Remark B.6. A set map 𝑓 : 𝑋 −→ 𝑌 induces a well-defined map 𝑓∗ : M(𝑋) −→ M(𝑌),
setting

( 𝑓∗(𝜇)) (𝐵) ··= 𝜇( 𝑓 −1(𝐵)), 𝜇 ∈ M(𝑋), 𝐵 ⊂ 𝑌.

If O×
∏

Ps (𝑌)\{𝐴}
ℝ is an element of the subbasis for the product topology on M(𝑌), with

O ⊂ ℝ open and 𝐴 ⊂ 𝑌 , we have

𝑓 −1
∗

(
O ×

∏
Ps (𝑌)\{𝐴}

ℝ

)
= O ×

∏
Ps (𝑋)\{𝑓 −1 (𝐴)}

ℝ

which is open for the product topology on M(𝑋). Hence 𝑓∗ is continuous.

We are now ready to give our first example of an infinite amenable group.

Theorem B.7. The group ℤ is amenable.

Proof. For 𝑛 ≥ 1, consider 𝜇𝑛 ··=
1
𝑛

𝑛∑︁
𝑗=1

𝛿 𝑗. Any convex combination of means is a mean,

so 𝜇𝑛 ∈ M(ℤ) for every 𝑛 ≥ 1. By Lemma B.3, M(ℤ) is compact, so (𝜇𝑛)𝑛≥1 has an
accumulation point 𝜇 ∈ M(ℤ) (by the proof of Theorem A.37). We now prove 𝜇 is a left
invariant mean for the action ℤ↷ ℤ, i.e. we show that 𝑔𝜇 = 𝜇 for all 𝑔 ∈ ℤ. Writing
ℤ = ⟨𝑢⟩ multiplicatively, it is enough to prove that 𝑢𝜇 = 𝜇. First, note that if 𝐴 ⊂ ℤ
and 𝑗 ∈ ℤ, then

𝑢𝛿 𝑗 (𝐴) = 𝛿 𝑗 (𝑢−1𝐴) =
{

1 if 𝑗 ∈ 𝑢−1𝐴

0 if 𝑗 ∉ 𝑢−1𝐴
=

{
1 if 𝑗 + 1 ∈ 𝐴
0 if 𝑗 + 1 ∉ 𝐴

= 𝛿 𝑗+1(𝐴)
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so that 𝑢𝛿 𝑗 = 𝛿 𝑗+1. It follows that 𝑢𝜇𝑛 =
1
𝑛

𝑛+1∑︁
𝑗=2

𝛿 𝑗, and thus 𝑢𝜇𝑛 − 𝜇𝑛 = 1
𝑛
(𝛿𝑛+1 − 𝛿1)

for all 𝑛 ≥ 1. This implies that
𝑢𝜇𝑛 − 𝜇𝑛 −→ 0 (11)

as 𝑛 → ∞, in ℝPs (ℤ). If, towards a contradiction, 𝑢𝜇 ≠ 𝜇, we can separate these two
points by disjoint neighbourhoods𝑈 and𝑉 , because ℝPs (ℤ) is Hausdorff by Proposition
A.42. Since 𝜇 is an accumulation point of (𝜇𝑛)𝑛≥1 and 𝑢𝜇 is an accumulation point of
(𝑢𝜇𝑛)𝑛≥1, we can find infinitely many terms of the sequence (𝜇𝑛)𝑛≥1 in𝑈 and infinitely
many terms of (𝑢𝜇𝑛)𝑛≥1 in 𝑉 . Since they are disjoint, this contradicts (11). Thus
𝑢𝜇 = 𝜇, and this finishes the proof. □

Above, the fact that 𝑢𝜇 is an accumulation point of (𝑢𝜇𝑛)𝑛≥1 follows from the con-
tinuity of

𝜑𝑢 : M(ℤ) −→ M(ℤ)
𝜇 ↦−→ 𝑢𝜇

and the continuity of 𝜑𝑢 follows from Remark B.6.
From this example, we will derive below numerous examples of amenable groups.
Before this, let us in contrast provide also the simpliest example of a non-amenable

group: the non-abelian free group on two generators.
Recall that if 𝑆 is a set, there exists a group called the free group on 𝑆 and denoted

𝐹𝑆, satisfying the following universal property: for any group𝐺 and any map 𝑓 : 𝑆 −→
𝐺, there is a unique group homomorphism 𝑓 : 𝐹𝑆 −→ 𝐺 so that 𝑓 ◦ 𝜄 = 𝑓 , where
𝜄 : 𝑆 ↩→ 𝐹𝑆 is the natural inclusion of 𝑆 in 𝐹𝑆 ([4, theorem 1.5], [28, theorem 11.1]).

For any set 𝑆, 𝐹𝑆 depends only on |𝑆| [28, theorem 11.4], up to isomorphism, and
|𝑆| is therefore called the rank of 𝐹𝑆. We write 𝐹𝑑 if |𝑆| = 𝑑, and 𝐹∞ if |𝑆| = |ℕ|. The
group 𝐹0 is trivial, and 𝐹1 is infinite cyclic. For 𝑛 ≥ 2, 𝐹𝑛 is not abelian. Free groups
play a central role in group theory, and more details on their properties can be found
in [4, chapter 1], [28, chapter 11]. One particularly important result about them is the
so called Nielsen-Schreier theorem ([4, theorem 1.15], [28, theorem 11.44]), stating that
any subgroup of a free group is itself a free group.

For us, non-abelian free groups provide the other part of the spectrum, opposite to
finite groups and ℤ, as they are not amenable.

Theorem B.8. The group 𝐹2 is not amenable.

Proof. Suppose for a contradiction that there exists an invariant mean 𝜇 on 𝐹2. Write
𝐹2 = {𝑒} ⊔ 𝐴+ ⊔ 𝐴− ⊔ 𝐵+ ⊔ 𝐵−, where 𝐴+ (resp. 𝐴−) consists of reduced words starting
with an 𝑎 (resp. 𝑎−1) and 𝐵+ (resp. 𝐵−) consists of reduced words starting with a 𝑏
(resp. 𝑏−1). Since the second letter of an element of 𝐴+ can be an 𝑎, a 𝑏 or a 𝑏−1,
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multiplying this element by 𝑎−1 produces an element either of 𝐴+, 𝐵+ or 𝐵−. Then

𝑎−1𝐴+ = {𝑒} ⊔ 𝐴+ ⊔ 𝐵+ ⊔ 𝐵−.

Properties of 𝜇 then imply

𝜇(𝐴+) = 𝜇(𝑎−1𝐴+) = 𝜇({𝑒} ⊔ 𝐴+ ⊔ 𝐵+ ⊔ 𝐵−) = 𝜇({𝑒}) + 𝜇(𝐴+) + 𝜇(𝐵+) + 𝜇(𝐵−)

and erasing 𝜇(𝐴+) of both sides leaves us with 𝜇({𝑒}) + 𝜇(𝐵+) + 𝜇(𝐵−) = 0. Since
𝜇 takes positive values, this forces 𝜇({𝑒}) = 𝜇(𝐵+) = 𝜇(𝐵−) = 0. Likewise, we get
𝜇(𝐴+) = 𝜇(𝐴−) = 0. We conclude that

1 = 𝜇(𝐹2) = 𝜇({𝑒} ⊔ 𝐴+ ⊔ 𝐴− ⊔ 𝐵+ ⊔ 𝐵−)
= 𝜇({𝑒}) + 𝜇(𝐴+) + 𝜇(𝐴−) + 𝜇(𝐵+) + 𝜇(𝐵−)
= 0

which is absurd. Therefore such a 𝜇 cannot exist. □

As a matter of fact, the proof makes apparent an observation already done by
Von Neumann: the existence of an invariant mean on a group is an obvious obstruc-
tion for this group to have a paradoxical decomposition. More precisely, if a group
𝐺 is amenable, then there cannot exist 𝐴1, . . . , 𝐴𝑛, 𝐵1, . . . , 𝐵𝑚 ⊂ 𝐺 non-empty and
𝑔1, . . . , 𝑔𝑛, ℎ1, . . . , ℎ𝑚 ∈ 𝐺 so that

𝐺 = 𝐴1 ⊔ · · · ⊔ 𝐴𝑛 ⊔ 𝐵1 ⊔ · · · ⊔ 𝐵𝑚 = 𝑔1𝐴1 ⊔ · · · ⊔ 𝑔𝑛𝐴𝑛 = ℎ1𝐵1 ⊔ · · · ⊔ ℎ𝑚𝐵𝑚.

What is much less obvious is that it is the only obstruction, namely if a group does
not carry an invariant mean, it must have a paradoxical decomposition. This result
is an outstanding theorem from Alfred Tarski, the proof of which can be found for
instance in [4, section 14.3].

A group 𝐺 acts on itself by left multiplication, and this action induces an action of
𝐺 on M(𝐺), by defining

(𝑔 · 𝜇) (𝐴) ··= 𝜇(𝑔−1𝐴)
for every 𝜇 ∈ M(𝐺), 𝑔 ∈ 𝐺 and 𝐴 ⊂ 𝐺. Denoting M(𝐺)𝐺 the set of fixed points for
this action, we see that a 𝐺−invariant mean is merely an element of M(𝐺)𝐺, i.e. 𝐺 is
amenable if and only if M(𝐺)𝐺 ≠ ∅.

Moreover, as proved earlier, M(𝐺) is compact, and we therefore see that a sufficient
condition for 𝐺 to be amenable is to fix a point in every non-empty convex compact
𝐺−space in a locally convex topological vector space. It turns out that the converse
holds as well, i.e. an amenable group fixes a point in every convex compact 𝐺−space
[2, theorem G.1.7].

Lastly, here is a third characterization of amenability. For a group 𝐺, let

M′(𝐺) ··= {𝑚 ∈ ℓ∞(𝐺)∗ : 𝑚 ≥ 0, 𝑚(1𝐺) = 1, ∥𝑚∥ ≤ 1}
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where 𝑚 ≥ 0 significates 𝑚( 𝑓 ) ≥ 0 for every 𝑓 ≥ 0. Then 𝐺 acts naturally on M′(𝐺),
by

(𝑔 · 𝑚) ( 𝑓 ) ··= 𝑚(𝑔−1 𝑓 ), 𝑚 ∈ M′(𝐺), 𝑔 ∈ 𝐺, 𝑓 ∈ ℓ∞(𝐺).
Observe that an element 𝑚 ∈ M′(𝐺) gives rise to a mean 𝜇𝑚 ∈ M(𝐺) defined as

𝜇𝑚(𝐴) ··= 𝑚(1𝐴)

for all 𝐴 ⊂ 𝐺. One has indeed 𝜇𝑚(𝐺) = 𝑚(1𝐺) = 1 and 𝜇𝑚 is additive on disjoint
subsets of 𝐺 as

𝜇𝑚(𝐴 ⊔ 𝐵) = 𝑚(1𝐴⊔𝐵) = 𝑚(1𝐴 + 1𝐵) = 𝑚(1𝐴) + 𝑚(1𝐵) = 𝜇𝑚(𝐴) + 𝜇𝑚(𝐵).

for 𝐴, 𝐵 ⊂ 𝐺 disjoint. This correspondence can in fact be inverted, i.e. there is a
bijection between M(𝐺) and M′(𝐺). Coupled with the equality

𝜇𝑚(𝑔𝐴) = 𝑚(1𝑔𝐴) = 𝑚(𝑔1𝐴) = (𝑔−1 · 𝑚) (1𝐴)

it follows that 𝐺 has a 𝐺−invariant mean if and only if there exists 𝑚 ∈ M′(𝐺) so that
𝑚(𝑔𝑓 ) = 𝑚( 𝑓 ) for every 𝑔 ∈ 𝐺 and every 𝑓 ∈ ℓ∞(𝐺).

We shall summarize all these results in a theorem.

Theorem B.9. A group 𝐺 is amenable if and only if one of the following equiv-
alent conditions hold:

(i) 𝐺 has a 𝐺−invariant mean.

(ii) 𝐺 has no paradoxical decomposition.

(iii) 𝐺 fixes a point in any non-empty convex compact 𝐺−space.

(iv) There exists 𝑚 ∈ M′(𝐺) so that 𝑚(𝑔𝑓 ) = 𝑚( 𝑓 ) for every 𝑔 ∈ 𝐺 and 𝑓 ∈
ℓ∞(𝐺).

Another characterization is due to Erling Følner, who formulated amenability in
terms of almost invariant sets. More precisely, he showed in [17] that a group 𝐺 is
amenable if and only if for any 𝜀 > 0 and any finite subset 𝑆 ⊂ 𝐺, there exists a finite
subset 𝐹 ⊂ 𝐺 so that

|𝑠𝐹Δ𝐹 | < 𝜀 |𝐹 |
for all 𝑠 ∈ 𝑆. Slight variations of this definition lead to introduce Følner sequences and
Følner nets [4, section 14.4].

Later on, Hans Reiter also introduced its own version of amenability [27], in terms
of (𝑆, 𝜀)−invariant vectors for the induced actions of a group 𝐺 on the ℓ 𝑝−spaces
ℓ 𝑝(𝐺), 𝑝 ∈ [1,∞), and defined the corresponding Reiter properties (𝑅𝑝). We inves-
tigated these properties in [13], proving that (𝑅1) is equivalent to (𝑅2), and the same
argument shows that (𝑅𝑝) is equivalent to (𝑅𝑞) for any 𝑝, 𝑞 ∈ [1,∞). It is also showed
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in [13, proposition 2.6] that (𝑅2) is equivalent to a property related to the uniform
convexity of ℓ 2(𝐺) ([13, lemma 1.17], [4, proposition 14.33]).

Perhaps more surprisingly, amenability also relates to probabilistic phenomena
on groups, with in particular the celebrated Kesten’s theorem, established by Harry
Kesten in [22] in 1959, that we also derived in [13, theorem 2.26].

For much more details on these groundbreaking results, their proofs, and the theme
of amenability, we refer to [4, chapter 14], [2, appendix G] or [24].

In the rest of this appendix, we will see how to use the fixed-point characterization
to establish the basic stability properties of the class of amenable groups. This way
we get plenty of amenable groups, and the non-amenability of 𝐹2 will also bring other
examples of non-amenable groups.

Let us begin by recording the following.

Proposition B.10. Let 𝐺 be an amenable group.

(i) If 𝐻 ⩽ 𝐺, then 𝐻 is amenable.

(ii) If 𝑁 ◁ 𝐺, then 𝐺/𝑁 is amenable.

Proof. (i) See [4, theorem 14.9].
(ii) Let 𝐾 be a convex compact 𝐺/𝑁−space. This is naturally a 𝐺−space by letting
𝑔 · 𝑥 ··= (𝑔𝑁) · 𝑥 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐾 . As this 𝐺−space is convex compact, and 𝐺 is
amenable, we get a 𝐺−fixed point 𝑦 ∈ 𝐾 , which is by definition a 𝐺/𝑁−fixed point for
the initial action of 𝐺/𝑁 on 𝐾 . Thus 𝐺/𝑁 is amenable, and (ii) is proved. □

Coupled with Theorem B.8, we deduce the following.

Corollary B.11. Any group containing a subgroup isomorphic to 𝐹2 is not
amenable. In particular, 𝐹𝑑 is not amenable for all 𝑑 ≥ 2.

We also obtained in a different way the non-amenability of 𝐹𝑑, 𝑑 ≥ 2, in [13, corol-
lary 2.32], via Kesten’s theorem.

However, for our purposes, Proposition B.10 does not help us to extend the class
of amenable groups because any subgroup or quotient of a finite group or ℤ is itself
finite or isomorphic to ℤ. To get bigger groups from old ones, one considers extensions
of groups.

Definition B.12. Let 𝐺, 𝑄 be two groups, and 𝑁 ◁ 𝐺.
We say that 𝐺 is an extension of 𝑁 by 𝑄 if 𝐺/𝑁 = 𝑄.
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This is the same as saying that there is a short exact sequence of groups

1 −→ 𝑁 −→ 𝐺 −→ 𝑄 −→ 1.

Example B.13. Consider the matrix group

𝐺 ··=
{ (
𝑎 𝑏

0 1

)
: 𝑎 ∈ ℝ∗, 𝑏 ∈ ℝ

}
also denoted Aff(ℝ), and called the affine group on ℝ. Consider the two subgroups

𝑁 ··=
{ (

1 𝑏

0 1

)
: 𝑏 ∈ ℝ

}
� ℝ, 𝑄 ··=

{ (
𝑎 0
0 1

)
: 𝑎 ∈ ℝ∗

}
� ℝ∗

and the group homomorphism 𝜑 : 𝐺 −→ ℝ∗ sending
(
𝑎 𝑏

0 1

)
to 𝑎. Then 𝑁 = Ker(𝜑)

is a normal subgroup of 𝐺, and as 𝜑 is surjective, it induces a group isomorphism
𝐺/𝑁 � ℝ∗. Thus 𝐺 is an extension of 𝑁 by 𝑄.

Using the fixed point property, we can establish the following.

Theorem B.14. If 𝐺 is an extension of 𝑁 by 𝑄, and 𝑁, 𝑄 are amenable, then 𝐺
is amenable.

Proof. Let 𝐾 ··= M(𝐺). By our previous considerations, 𝐾 is a convex compact𝐺−space.
In particular, it is a convex compact 𝑁−space and 𝑁 being amenable, it follows that
𝐾𝑁 ≠ ∅. Writing

𝐾𝑁 =
⋂
𝑛∈𝑁

{𝜇 ∈ 𝐾 : 𝑛𝜇 = 𝜇}

and observing that {𝜇 ∈ 𝐾 : 𝑛𝜇 = 𝜇} is closed in 𝐾 for all 𝑛 ∈ 𝑁, we get that 𝐾𝑁 is
closed in 𝐾 . In particular 𝐾𝑁 is compact since 𝐾 is compact. Now the initial action of
𝐺 on 𝐾 restricts to 𝐾𝑁 . Indeed if 𝑔 ∈ 𝐺, 𝜇 ∈ 𝐾𝑁 and 𝑛 ∈ 𝑁, one computes that

𝑛 · (𝑔𝜇) = 𝑔(𝑔−1𝑛𝑔 · 𝜇) = 𝑔𝜇

since 𝑔−1𝑛𝑔 ∈ 𝑁, as 𝑁 is normal in 𝐺, and 𝜇 ∈ 𝐾𝑁 . Since 𝑁 acts trivially on 𝐾𝑁 , this
last action is in fact an action of 𝑄, and its amenability implies that (𝐾𝑁)𝑄 ≠ ∅. This
is equivalent to say that 𝐾𝐺 ≠ ∅, whence 𝐺 is amenable. □

In particular, direct and semi-direct products of amenable groups are amenable.
Henceforth, by Theorem B.7 and an induction on 𝑑 ≥ 1, ℤ𝑑 is amenable for any 𝑑 ≥ 1.

For the next statements, recall that a group 𝐺 is finitely generated if there exists a
finite subset 𝑆 ⊂ 𝐺 so that any element of 𝐺 can be written as a product of elements
of 𝑆 or their inverses. In this case, we write 𝐺 = ⟨𝑆⟩.
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Corollary B.15. Any finitely generated abelian group is amenable.

Proof. Let thus 𝐺 be a finitely generated abelian group. Then there exists a finite
group 𝐹 and an integer 𝑑 ≥ 1 so that 𝐺 � ℤ𝑑 × 𝐹 (see e.g. [4, corollary 1.30]). Now ℤ𝑑

is amenable, and 𝐹 is amenable by Example B.5. Thus 𝐺 is amenable as well. □

Theorem B.14 can also be used to prove the non-amenability of certain groups. For
instance SL2(ℤ) is an extension of its center {±𝐼2} by the quotient SL2(ℤ)/{±𝐼2} =

PSL2(ℤ). As SL2(ℤ) is not amenable, it follows that PSL2(ℤ) is not amenable either.
The next operation on groups we consider is the directed union.

Definition B.16. Let 𝐺 be a group, and F a collection of subgroups of 𝐺. We
say F is directed if for any 𝐻, 𝐻′ ∈ F , there is 𝐻′′ ∈ F such that 𝐻, 𝐻′ ⩽ 𝐻′′.
Moreover, 𝐺 is the directed union of F if F is directed and

𝐺 =
⋃
𝐻∈F

𝐻.

As one might guess, amenability is also preserved when taking directed unions.

Theorem B.17. If 𝐺 is the directed union of F and if any 𝐻 ∈ F is amenable,
then 𝐺 is amenable.

Proof. Let 𝐾 ··= M(𝐺). We want to prove that 𝐾𝐺 ≠ ∅. As 𝐺 is the directed union of
F , it is enough to show ⋂

𝐻∈F
𝐾𝐻 ≠ ∅.

As in the proof of Theorem B.14, 𝐾𝐻 is closed for any 𝐻 ∈ F and 𝐾 is compact, so by
Proposition A.33 it is in fact enough to show that

𝑛⋂
𝑖=1
𝐾𝐻𝑖 ≠ ∅

for every 𝐻1, . . . , 𝐻𝑛 ∈ F . Fix then 𝐻1, . . . , 𝐻𝑛 ∈ F . As F is directed, we find 𝐻 ∈ F
so that 𝐻1, . . . , 𝐻𝑛 ⩽ 𝐻, which implies

𝑛⋂
𝑖=1
𝐾𝐻𝑖 ⊃ 𝐾𝐻 .

Since 𝐻 is amenable, and 𝐾 is convex compact, we deduce from Theorem B.9(iii) that
𝐾𝐻 ≠ ∅, finishing the proof. □
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Corollary B.18. A group 𝐺 is amenable if and only if all its finitely generated
subgroups are amenable.

Proof. If 𝐺 is amenable, all its subgroups are amenable by Proposition B.10. Con-
versely, suppose any finitely generated subgroup of 𝐺 is amenable, and consider

F ··= {𝐻 ⩽ 𝐺 : 𝐻 is finitely generated}.

The collection F is directed, as if 𝐻 = ⟨𝑆⟩, 𝐻′ = ⟨𝑆′⟩ are both finitely generated,
the subgroup 𝐻′′ = ⟨𝑆 ∪ 𝑆′⟩ is in F and contains both 𝐻 and 𝐻′ as subgroups. By
assumption, any 𝐻 ∈ F is amenable, and 𝐺 is the directed union of F , whence 𝐺 is
amenable by Theorem B.17. □

This result allows us to strenghthen Corollary B.15.

Corollary B.19. Any abelian group is amenable.

Proof. Suppose that 𝐺 is an abelian group, and let 𝐻 ⩽ 𝐺 be a finitely generated sub-
group of 𝐺. Then 𝐻 itself is a finitely generated abelian group, and thus is amenable
by Corollary B.15. Henceforth, 𝐺 has all its finitely generated subgroups amenable,
and Corollary B.18 now implies that 𝐺 is amenable. □

This way, we get for instance the amenability of (ℚ, +), even if the latter is not
finitely generated. Likewise, we obtain the amenability of (ℝ𝑛, +), for any 𝑛 ≥ 1.

Corollary B.20. Any solvable group is amenable.

Proof. A solvable group is obtained from the trivial group by doing finitely many ex-
tensions by abelian groups. As these are amenable, and as amenability is preserved
by extensions, the claim follows. □
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