
Course Notes

Ecole Polytechnique Fédérale de Lausanne
Mathematics Department

Ergodic theory and its applications to number
theory

Author
Vincent Dumoncel

Professor
Florian Richter

July 15, 2023



Contents

1 Measure-preserving systems 3
1.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Von Neumann’s Mean Ergodic Theorem 12
2.1 The Koopman operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Mean Ergodic Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Consequences of the Mean Ergodic Theorem . . . . . . . . . . . . . . . . 16

3 The Birkhoff’s Pointwise Ergodic Theorem 21
3.1 The Maximal Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The Pointwise Ergodic Theorem . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Normal numbers and the Borel’s theorem . . . . . . . . . . . . . . . . . 25
3.4 Continued fractions expansion . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Beatty sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Classifying measure-preserving systems 34
4.1 Factors, extensions, isomorphisms . . . . . . . . . . . . . . . . . . . . . 34
4.2 Kronecker systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Weakly mixing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Mixing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 The Jacobs-de Leeuw-Glicksberg decomposition 47
5.1 The spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Weak mixing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 The splitting Hc ⊕ Hwm . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Modeling ℕ through dynamical systems 54
6.1 The Bogolyubov-Krylov Theorem . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Furstenberg’s correspondence principle . . . . . . . . . . . . . . . . . . . 55

7 Applications to number theory 58
7.1 First applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 The Szemerédi’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1



Ergodic theory Contents

7.3 The Erdös sumset conjecture . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Entropy 64
8.1 Entropy of a partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2



Ergodic theory Measure-preserving systems

1. Measure-preserving systems

In this first section, we present the basic objects of ergodic theory, and define our
running examples for the entire course.

1.1 Definitions and examples

The first object to consider is what are called measure-preserving transformation.
For this, fix a probability space (𝑋,A, 𝜇). Recall that the push-forward of 𝜇 under
any measurable map 𝑇 : 𝑋 −→ 𝑋 is the measure 𝑇∗𝜇 on 𝑋 defined by

𝑇∗𝜇(𝐴) ··= 𝜇(𝑇−1𝐴)

for all 𝐴 ∈ A, where 𝑇−1𝐴 ··= {𝑥 ∈ 𝑋 : 𝑇𝑥 ∈ 𝐴}.

Definition 1.1. The map 𝑇 : 𝑋 −→ 𝑋 is measure-preserving if 𝑇∗𝜇 = 𝜇.

Thus 𝑇 is measure-preserving if 𝜇(𝑇−1𝐴) = 𝜇(𝐴) for all 𝐴 ∈ A.

Definition 1.2. A measure-preserving system is a quadruple (𝑋,A, 𝜇, 𝑇) where
(𝑋,A, 𝜇) is a probability space and 𝑇 : 𝑋 −→ 𝑋 is measure-preserving.

Here are some examples of measure-preserving systems.

Example 1.3. (i) Let 𝑋 = {𝑥} be a singleton, with A = {∅, {𝑥}} and 𝜇(∅) = 0, 𝜇({𝑥}) =
1. Let 𝑇 = Id𝑋 . Then (𝑋,A, 𝜇, 𝑇) is a measure-preserving system.
(ii) More generally, if (𝑋,A, 𝜇) is an arbitrary probability space and 𝑇 = Id𝑋 , then
(𝑋,A, 𝜇, 𝑇) is a measure-preserving system, called the identity system.
(iii) Consider an integer 𝑚 ≥ 2, and 𝑋 = {0, 1, . . . , 𝑚 − 1}, which can be identified
with the cyclic group of order 𝑚. Let A = P(𝑋), 𝜇({𝑘}) = 1

𝑚
for all 𝑘 = 0, . . . , 𝑚 − 1.

Define the transformation 𝑇 : 𝑋 −→ 𝑋 by

𝑇 (𝑘) ··= 𝑘 + 1 mod 𝑚

for all 𝑘 = 0, . . . , 𝑚 − 1. Then 𝑇 is clearly measure-preserving, and (𝑋,A, 𝜇, 𝑇) is a
measure-preserving system. It is called the rotation on 𝑚 points.
(iv) Let 𝑋 = [0, 1], endowed with the Borel 𝜎−algebra and 𝜆 the Lebesgue measure.
Fix 𝛼 ∈ ℝ, and define the map

𝑇 (𝑥) ··= 𝑥 +𝛼 mod 1.
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Ergodic theory 1.1 Definitions and examples

The translation invariance of 𝜆 implies that 𝑇 preserves the measure. Alternatively,
we can identify 𝑋 with the compact group 𝕋 = ℝ/ℤ. The Lebesgue measure on [0, 1]
is identified with the Haar measure on 𝕋 , and 𝑇 becomes the map

𝑇 (𝑥) = 𝑥 + �̃�

where �̃� = 𝑥 +ℤ ∈ 𝕋 . Lastly, 𝕋 is isometrically isomorphic to the circle 𝕊1 ⊂ ℂ, viewed
as a group under multiplication. Under this identification, one has

𝑇 (𝑧) = 𝑧e2𝜋𝑖𝛼.

This system is usually called a circle rotation.
(v) More generally, if 𝑋 is a compact abelian group equipped with its Borel 𝜎−algebra
and the Haar measure 𝑚𝑋 , then for any 𝛼 ∈ 𝑋 the map 𝑇 (𝑥) = 𝑥 + 𝛼 preserves 𝑚𝑋 ,
so that (𝑋,A, 𝜇, 𝑇) is a measure-preserving system, called a group rotation.

In the last example, the fact that 𝑇 preserves the Haar measure follows from the
next more general result.

Lemma 1.4. Let 𝑋 be a compact abelian group, and 𝑇 : 𝑋 −→ 𝑋 be a surjective
endomorphism. Then 𝑇 preserves the Haar measure 𝑚𝑋 .
In particular, (𝑋,B(𝑋), 𝑚𝑋 , 𝑇) is a measure-preserving system.

Proof. Consider on 𝑋 the measure 𝜇 ··= 𝑇∗𝑚𝑋 . Fix 𝐴 ∈ B(𝑋), and 𝑥 ∈ 𝑋 . Since 𝑇 is
surjective, there is 𝑦 ∈ 𝑋 such that 𝑇 (𝑥) = 𝑦, and we compute that

𝜇(𝐴 + 𝑥) = 𝑚𝑋 (𝑇−1(𝐴 + 𝑥)) = 𝑚𝑋 (𝑇−1𝐴 + 𝑦) = 𝑚𝑋 (𝑇−1𝐴) = 𝜇(𝐴).

Thus 𝜇 is invariant by left translation, and the uniqueness of the Haar measure on 𝑋
forces 𝜇 = 𝑚𝑋 , which means 𝑇 is measure-preserving. □

Let us provide additional examples.

Example 1.5. (i) Take (𝑋,A,𝜆) to be the unit interval [0, 1] equipped with its Borel
𝜎−algebra and the Lebesgue measure. The doubling-map is the transformation 𝑇 of
𝑋 defined as

𝑇 (𝑥) ··= 2𝑥 mod 1.
It preserves the Lebesgue measure, since for a closed interval [𝑎, 𝑏] ⊂ [0, 1], one has

𝑇−1( [𝑎, 𝑏]) =
[
𝑎

2
,
𝑏

2

]
∪
[
𝑎 + 1

2
,
𝑏 + 1

2

]
and thus 𝜇(𝑇−1[𝑎, 𝑏]) = 𝜇( [𝑎, 𝑏]). Closed intervals of this form generate the Borel
𝜎−algebra on [0, 1], hence 𝑇 is measure-preserving.
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Ergodic theory 1.2 Recurrence

(ii) Let 𝑋 = {0, 1}ℕ be the space of infinite sequences of 0 and 1. Give {0, 1} the discrete
topology, so that 𝑋 is a compact topological space. Let B(𝑋) be its Borel 𝜎−algebra.
Define a probability measure 𝜇0 on {0, 1} by 𝜇0({0}) = 1 − 𝑝, 𝜇0({1}) = 𝑝, 𝑝 ∈ (0, 1),
and let 𝜇 = 𝜇ℕ

0 be the product measure on 𝑋 . Equivalently, 𝜇 is the unique measure
on 𝑋 satisfying

𝜇({(𝑥𝑛)𝑛≥0 ∈ 𝑋 : 𝑥0 = 𝑎0, . . . , 𝑥𝑚 = 𝑎𝑚}) =
𝑚∏
𝑖=0

𝜇0({𝑎𝑖})

for every 𝑚 ∈ ℕ and 𝑎0, . . . , 𝑎𝑚 ∈ {0, 1}. Define the left-shift as

𝑇 ((𝑥𝑛)𝑛≥0) ··= (𝑥𝑛+1)𝑛≥0

for all (𝑥𝑛)𝑛≥0 ∈ 𝑋 . The quadruple (𝑋,B(𝑋), 𝜇, 𝑇) is a measure-preserving system,
called a Bernoulli shift.
(iii) Given two measure-preserving systems (𝑋,A, 𝜇, 𝑇), (𝑌,B, 𝜈, 𝑆), we define their
product to be the space 𝑋 ×𝑌 with the product 𝜎−algebra A⊗B, the product measure
𝜇 ⊗ 𝜈, and the transformation 𝑇 × 𝑆 defined as

(𝑇 × 𝑆) (𝑥, 𝑦) ··= (𝑇𝑥, 𝑆𝑦)

for all (𝑥, 𝑦) ∈ 𝑋 ×𝑌 .

1.2 Recurrence

Here is the first important result in ergodic theory. It is known as the Poincaré’s
recurrence theorem.

Theorem 1.6. Let (𝑋,A, 𝜇, 𝑇) be a measure preserving system, and let 𝐴 ∈ A
with 𝜇(𝐴) > 0. Then there exists 𝑛 ∈ ℕ so that

𝜇(𝐴 ∩ 𝑇−𝑛𝐴) > 0.

Proof. The sets 𝐴,𝑇−1𝐴,𝑇−2𝐴, . . . all have the same measure 𝜇(𝐴) > 0, and all lie in
𝑋 which has measure 1. Therefore we must have 𝜇(𝑇−𝑖𝐴 ∩ 𝑇− 𝑗𝐴) > 0 for some 𝑖 < 𝑗.
Setting 𝑛 ··= 𝑗 − 𝑖, we get

𝜇(𝐴 ∩ 𝑇−𝑛𝐴) = 𝜇(𝑇−𝑖(𝐴 ∩ 𝑇−𝑛𝐴)) = 𝜇(𝑇−𝑖𝐴 ∩ 𝑇− 𝑗𝐴) > 0

as claimed. □
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Ergodic theory 1.2 Recurrence

As a consequence, we obtain the next corollary.

Corollary 1.7. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, and 𝐴 ∈ A.
Then for 𝜇−almost every 𝑥 ∈ 𝐴, there exists 𝑛 ∈ ℕ so that 𝑇𝑛𝑥 ∈ 𝐴.

Proof. Consider the set 𝐵 ··= {𝑥 ∈ 𝐴 : ∀𝑛 ∈ ℕ, 𝑇𝑛𝑥 ∉ 𝐴} ⊂ 𝐴. First, observe that
𝐵 ∈ A since we can write

𝐵 =
⋂
𝑛∈ℕ

{𝑥 ∈ 𝐴 : 𝑇𝑛𝑥 ∉ 𝐴} =
⋂
𝑛∈ℕ

(𝐴 ∩ 𝑇−𝑛(𝐴𝑐))

and 𝐴𝑐 ∈ A, so 𝑇−𝑛(𝐴𝑐) ∈ A because 𝑇𝑛 is measurable for all 𝑛 ≥ 0. A 𝜎−algebra
being closed under countable unions, we indeed have 𝐵 ∈ A. To prove the corollary,
we thus have to prove that 𝜇(𝐵) = 0. Suppose, towards a contradiction, that 𝜇(𝐵) > 0.
By Poincaré’s recurrence theorem, there exists 𝑘 ∈ ℕ such that

𝜇(𝐵 ∩ 𝑇−𝑘𝐵) > 0.

In particular, 𝐵 ∩ 𝑇−𝑘𝐵 ≠ ∅, so pick 𝑥 ∈ 𝐵 ∩ 𝑇−𝑘𝐵. Then 𝑥 ∈ 𝐵, so 𝑇𝑛𝑥 ∉ 𝐴 for every
𝑛 ∈ ℕ. On the other hand, 𝑥 ∈ 𝑇−𝑘𝐵, so 𝑇𝑘𝑥 ∈ 𝐵, in particular 𝑇𝑘𝑥 ∈ 𝐴. This is a
contradiction, and therefore 𝜇(𝐵) = 0. □

In words, this result says that almost every point of 𝐴 has an orbit visiting 𝐴 at
least one time.

These two results can be significantly strengthened. For instance, if 𝑋 is a compact
metric space, every point returns arbitrary close to its initial position.

Proposition 1.8. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, with 𝑋 com-
pact metric and A = B(𝑋) its Borel 𝜎−algebra. Then, for 𝜇−a.e. 𝑥 ∈ 𝑋 , we have

inf
𝑛≥1

d(𝑥, 𝑇𝑛𝑥) = 0.

The points 𝑥 ∈ 𝑋 with this property are called recurrent. By the previous proposi-
tion, 𝑥 ∈ 𝑋 is recurrent if and only if there exists a subsequence (𝑇𝑛𝑘𝑥)𝑘∈ℕ of (𝑇𝑛𝑥)𝑛∈ℕ
converging to 𝑥.

Proof. Let 𝐴 ⊂ 𝑋 be the set of non-recurrent points. We will prove 𝜇(𝐴) = 0. Since 𝑋
is metric compact, it is second countable, and we fix (𝐵𝑛)𝑛∈ℕ a basis for its topology.
Let 𝑥 ∈ 𝐴. By definition, this means inf

𝑛≥1
d(𝑥, 𝑇𝑛𝑥) > 0, so there is 𝜀 > 0 such that

d(𝑥, 𝑇𝑛𝑥) ≥ 𝜀, for all 𝑛 ≥ 1. In particular, 𝑇𝑛𝑥 ∉ 𝐵(𝑥, 𝜀) for all 𝑛 ≥ 1. Now let 𝑘 ∈ ℕ be
such that 𝑥 ∈ 𝐵𝑘 ⊂ 𝐵(𝑥, 𝜀). By Corollary 1.7, we find a full measure subset 𝐶𝑘 ⊂ 𝐵𝑘
such that for all 𝑦 ∈ 𝐶𝑘, there is𝑚(𝑘) ∈ ℕ with𝑇𝑚(𝑘)𝑦 ∈ 𝐶𝑘. Thus 𝑥 ∈ 𝐵𝑘 \𝐶𝑘, because
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Ergodic theory 1.2 Recurrence

if 𝑥 ∈ 𝐶𝑘, then 𝑇𝑚(𝑘)𝑥 ∈ 𝐶𝑘 ⊂ 𝐵(𝑥, 𝜀) for some 𝑚(𝑘) ∈ ℕ, but we already proved the
orbit of 𝑥 avoids 𝐵(𝑥, 𝜀). We then have

𝐴 ⊂
∞⋃
𝑘=0

𝐵𝑘 \ 𝐶𝑘

and since 𝜇(𝐵𝑘 \ 𝐶𝑘) = 0 for all 𝑘 ∈ ℕ, this implies 𝜇(𝐴) = 0, and we are done. □

Here is now a stronger version of Poincaré’s recurrence theorem.

Theorem 1.9. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, and 𝐴 ∈ A.
For any 𝜀 > 0, there exists 𝑛 ∈ ℕ such that

𝜇(𝐴 ∩ 𝑇−𝑛𝐴) ≥ 𝜇(𝐴)2 − 𝜀.

Proof. Fix 𝐴 ∈ A with 𝜇(𝐴) > 0. Denote, for 𝑘 ≥ 1, 𝐴𝑘 ··= 𝑇−𝑘𝐴. Since 𝑇 is measure-
preserving, 𝜇(𝐴𝑘) = 𝜇(𝐴) for all 𝑘 ≥ 1, and we denote 𝛼 ··= 𝜇(𝐴). Let now 𝑛 ≥ 1, and

set 𝑓 ··=
𝑛∑︁
𝑘=1

1𝐴𝑘 . On the one hand, we compute that

∫
𝑋

𝑓 d𝜇 =

𝑛∑︁
𝑘=1

𝜇(𝐴𝑘) = 𝑛𝛼

and on the other hand, we have∫
𝑋

𝑓 2 d𝜇 =

∫
𝑋

( 𝑛∑︁
𝑘=1

1𝐴𝑘 + 2
∑︁

1≤𝑖< 𝑗≤𝑛
1𝐴𝑖1𝐴 𝑗

)
d𝜇 = 𝑛𝛼 + 2

∑︁
1≤𝑖< 𝑗≤𝑛

𝜇(𝐴𝑖 ∩ 𝐴 𝑗).

To reach a contradiction, suppose there is 𝜀 > 0 such that 𝜇(𝐴 ∩ 𝐴𝑘) ≤ 𝜇(𝐴)2 − 𝜀
for all 𝑘 ≥ 1. This implies in particular that 𝜇(𝐴𝑖 ∩ 𝐴 𝑗) ≤ 𝜇(𝐴)2 − 𝜀 for all 𝑖 ≠ 𝑗.
Therefore, by the Cauchy-Schwartz inequality and the computations above, we obtain

𝑛2𝛼2 =

( ∫
𝑋

𝑓 d𝜇
)2

≤
∫
𝑋

𝑓 2 d𝜇 ≤ 𝑛𝛼 + 2(𝑛 − 1)𝑛(𝜇(𝐴)2 − 𝜀)

for all 𝑛 ≥ 1. This is a contradiction, since this last inequality does not hold for 𝑛 large
enough, for instance for 𝑛 > 𝛼

𝜀 . Thus, for any 𝜀 > 0, there must exists 𝑛 ∈ ℕ such that
𝜇(𝐴 ∩ 𝑇−𝑛𝐴) ≥ 𝜇(𝐴)2 − 𝜀, and the proof is complete. □

Poincaré’s recurrence theorem, and its generalizations and applications, form a
subfield of ergodic theory called the theory of recurrence. Broadly said, the goal is
to understand how and when orbits of points go back to their initial position, if they
do. Recurrence properties of dynamical systems can provide important informations
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Ergodic theory 1.3 Ergodicity

about their long-run behaviour. We are then willing to introduce the following termi-
nology.

Definition 1.10. A subset 𝑅 ⊂ ℕ is called a set of recurrence if for every
measure-preserving system (𝑋,A, 𝜇, 𝑇) and for every 𝐴 ∈ A with 𝜇(𝐴) > 0,
there is 𝑛 ∈ 𝑅 such that

𝜇(𝐴 ∩ 𝑇−𝑛𝐴) > 0.

With this definition, Poincaré’s recurrence theorem exactly says ℕ is a set of recur-
rence. In fact, the same proof shows that for an infinite subset 𝐸 ⊂ ℕ, the set

𝐸 − 𝐸 ··= {𝑖 − 𝑗 : 𝑖, 𝑗 ∈ 𝐸}

is a set of recurrence. Finally, the same proof with the sequence𝑇−2𝐴,𝑇−4𝐴, . . . proves
2ℕ is a set of recurrence.

Note furthermore that any subset of ℕ containing a set of recurrence is itself a set
of recurrence.

On the other hand, the set 2ℕ+1 of odd integers is not a set of recurrence. Consider
for instance the rotation on 2 points system: 𝑋 = {0, 1}, A = P(𝑋), 𝜇({0}) = 𝜇({1}) =
1
2 , and 𝑇 : 𝑋 −→ 𝑋 is given by 𝑇 (0) = 1 and 𝑇 (1) = 0. Then, for all 𝑘 ≥ 0, 𝑇2𝑘 = Id𝑋
and 𝑇2𝑘+1 = 𝑇. If 𝐴 = {0}, then for all 𝑘 ≥ 0, one has

𝜇(𝐴 ∩ 𝑇−(2𝑘+1)𝐴) = 𝜇(𝐴 ∩ 𝑇−1𝐴) = 𝜇({0} ∩ {1}) = 𝜇(∅) = 0

proving that 2ℕ + 1 = {2𝑘 + 1 : 𝑘 ≥ 0} is not a set of recurrence.
Also, the set {2, 3, 5, . . . } of prime numbers is not a set of recurrence. Indeed, as

above, considering the rotation on 4 points system and 𝐴 = {0} shows that {2}∪(2ℕ+1)
is not a set of recurrence. Since the latter contains the set of prime numbers, the claim
follows.

1.3 Ergodicity

The word ergodic is derived from Ludwig Boltzmann’s hypothesis "ergodic hypoth-
esis" in thermodynamics. In the language of measure-preserving systems, this hy-
pothesis means the amount of time that the orbit 𝑇𝑥,𝑇2𝑥, 𝑇3𝑥, . . . of a typical point
𝑥 ∈ 𝑋 spends in 𝐴 a measurable set should be proportional to the measure of that
set. For instance, if a set has measure 1

2 , we expect that for half of all 𝑛 ∈ ℕ, we have
𝑇𝑛𝑥 ∈ 𝐴. What we have just described is the conclusion of the so called Birkhoff’s
Pointwise Ergodic Theorem, which will be established in the sequel.

Although Boltzmann’s hypothesis should occurs in many dynamical systems we
care, it is not true it occurs in every system. We should then distinguish betweem the
two. This motivates the next definition.
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Ergodic theory 1.3 Ergodicity

Definition 1.11. A measure-preserving system (𝑋,A, 𝜇, 𝑇) is ergodic if

𝐴 = 𝑇−1𝐴 =⇒ 𝜇(𝐴) ∈ {0, 1}.

A subset 𝐴 ∈ A is called invariant if 𝐴 = 𝑇−1𝐴, and almost invariant if𝜇(𝐴Δ𝑇−1𝐴) =
0. Similarly, a measurable function 𝑓 : 𝑋 −→ ℂ is invariant if 𝑓 ◦ 𝑇 = 𝑓 , and almost
everywhere invariant if 𝑓 (𝑇𝑥) = 𝑓 (𝑥) for 𝜇−almost every 𝑥 ∈ 𝑋 .

With this terminology, (𝑋,A, 𝜇, 𝑇) is ergodic if it has no non-trivial invariant sets.
Intuitively, this means the system behaves in a homogeneous manner, filling the entire
space. It does not stay concentrated in a certain region of the space.

Example 1.12. (i) The trivial system is clearly ergodic.
(ii) Since any subset of the identity system is invariant, such a system is not ergodic.
(iii) The rotation on 2 points is ergodic, since the only invariant subsets in this case
are ∅ and 𝑋 = {0, 1}. More generally, a rotation on 𝑚 points is ergodic.

Establishing the (non-)ergodicity of more complicated systems is much more in-
volved, and will be done later. However, we can already observe the following.

Remark 1.13. Ergodicity is usually not preserved under direct products. For instance,
if 𝑋 = {0, 1}, 𝑇 (0) = 1, 𝑇 (1) = 0 is the rotation on 2 points, then the product system
𝑋 × 𝑋 has non-trivial invariant subsets, for instance 𝐴 = {(0, 0), (1, 1)}. Clearly,
𝜇(𝐴) = 1

2 .

Since measurable sets give naturally measurable functions, we are led naturally
to the following equivalent characterizations of ergodicity.

Proposition 1.14. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
The following claims are equivalent.

(i) The system (𝑋,A, 𝜇, 𝑇) is ergodic.

(ii) If 𝐴 ∈ A is almost everywhere invariant, then 𝜇(𝐴) ∈ {0, 1}.

(iii) If 𝑓 : 𝑋 −→ ℂ is measurable and invariant, then 𝑓 equals a constant almost
everywhere.

(iv) If 𝑓 : 𝑋 −→ ℂ is measurable and almost everywhere invariant, then 𝑓

equals a constant almost everywhere.

Proof. (i)=⇒ (ii) : Suppose (𝑋,A, 𝜇, 𝑇) is ergodic, and let 𝐴 ∈ A be almost everywhere
invariant. Then the set

𝐴′ ··=
∞⋂
𝑘=0

∞⋃
𝑖=𝑘

𝑇−𝑖𝐴

9
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is invariant and we have 𝜇(𝐴′) = 𝜇(𝐴). By ergodicity, we have 𝜇(𝐴′) ∈ {0, 1}, so
𝜇(𝐴) ∈ {0, 1} as well.
(ii) =⇒ (i) : Obvious, since an invariant set is in particular almost everywhere invari-
ant.
(iii) =⇒ (iv) : Suppose 𝑓 : 𝑋 −→ ℂ is measurable and almost everywhere invariant.
This means the set 𝐴𝑓 ··= {𝑥 ∈ 𝑋 : 𝑓 (𝑇𝑥) = 𝑓 (𝑥)} has full measure, and it implies that

𝐴 ··=
∞⋂
𝑘=0
𝑇−𝑘𝐴𝑓

also has full measure, and is invariant. Thus the function 𝑓 ′(𝑥) = 𝑓 (𝑥)1𝐴 is measur-
able and invariant, and by (iii) we deduce that 𝑓 ′ is almost everywhere constant. It
follows that 𝑓 is also almost everywhere constant.
(iv) =⇒ (iii) : It is immediate, as (ii) =⇒ (i).
(i) =⇒ (iii) : Fix a measurable and invariant function 𝑓 : 𝑋 −→ ℂ. Recall its essential
supremum is defined as

ess sup( 𝑓 ) ··= inf{𝛼 ∈ ℝ : 𝜇({𝑥 ∈ 𝑋 : 𝑓 (𝑥) > 𝛼}) = 0}.
If 𝛼 < ess sup( 𝑓 ), then the set 𝐴𝛼 ··= {𝑥 ∈ 𝑋 : 𝑓 (𝑥) < 𝛼} is invariant since 𝑓 is
invariant. By ergodicity, we get 𝜇(𝐴𝛼) = 0 or 𝜇(𝐴𝛼) = 1. However, this last case
is excluded since 𝛼 < ess sup( 𝑓 ). Thus 𝜇(𝐴𝛼) = 0, and it follows that 𝑓 is almost
everywhere constant, equals to ess sup( 𝑓 ).
(iii) =⇒ (i) : Suppose 𝐴 ∈ A satisfies 𝐴 = 𝑇−1𝐴. Then 𝑓 ··= 1𝐴 is measurable and
invariant, so constant almost everywhere. This implies that 𝜇(𝐴) ∈ {0, 1}, and the
system is ergodic. □

Example 1.15. Consider 𝑅𝛼 : 𝕋 −→ 𝕋 a rational rotation of the torus. Choose 𝑛 ∈ ℤ
such that 𝑛𝛼 ∈ ℤ. Then 𝑓 (𝑥) ··= e2𝜋𝑖𝑛𝑥 is invariant, since

𝑓 (𝑅𝛼𝑥) = 𝑓 (𝑥 +𝛼) = e2𝜋𝑖𝑛(𝑥+𝛼) = e2𝜋𝑖𝑛𝛼e2𝜋𝑖𝑛𝑥 = 𝑓 (𝑥).
However 𝑓 is clearly non-constant. This proves this system is not ergodic.

Below are additional characterizations of ergodicity.

Proposition 1.16. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
The following claims are equivalent.

(i) The system (𝑋,A, 𝜇, 𝑇) is ergodic.

(ii) If 𝐴 ∈ A satisfies 𝜇(𝐴) > 0, then 𝜇

( ∞⋃
𝑘=1
𝑇−𝑘𝐴

)
= 1.

(iii) If 𝐴, 𝐵 ∈ A satisfies 𝜇(𝐴)𝜇(𝐵) > 0, then there exists 𝑛 ≥ 1 such that
𝜇(𝑇−𝑛𝐴 ∩ 𝐵) > 0.

10
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Proof. (i) =⇒ (ii) : Let 𝐴 ∈ A. Observe that
∞⋃
𝑘=1
𝑇−𝑘𝐴 is invariant, so it has either zero

or full measure. If it has zero measure, then 𝜇(𝐴) = 𝜇(𝑇−1𝐴) = 0, which is excluded.
(ii) =⇒ (iii) : Towards a contradiction, suppose 𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = 0 for all 𝑛 ≥ 1. Then,
since 𝜇(𝐴), 𝜇(𝐵) > 0, it follows from (ii) that

0 < 𝜇(𝐵) = 𝜇

(( ∞⋃
𝑛=1

𝑇−𝑛𝐴

)
∩ 𝐵

)
≤

∞∑︁
𝑛=1

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = 0

which is absurd. Thus there must exists 𝑛 ≥ 1 with 𝜇(𝑇−𝑛𝐴 ∩ 𝐵) > 0.
(iii) =⇒ (i) : We prove the contrapositive. Suppose the system is not ergodic, and let
𝐴 ∈ A having 0 < 𝜇(𝐴) < 1. Consider 𝐵 ··= 𝑋 \ 𝐴 ∈ A, which also has 0 < 𝜇(𝐵) < 1.
Hence 𝜇(𝐴)𝜇(𝐵) > 0, although

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = 𝜇(𝐴 ∩ (𝑋 \ 𝐴)) = 𝜇(∅) = 0

for all 𝑛 ≥ 1. This proves that (iii) does not hold, and concludes the proof. □

11
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2. The Von Neumann’s Mean Ergodic Theorem

In this section, we establish a second major result, known as the Von Neumann’s
mean ergodic theorem. For a measure-preserving system (𝑋,A, 𝜇, 𝑇), it describes for
any measurable 𝑓 : 𝑋 −→ ℂ a convergence in average for the sequence ( 𝑓 ◦ 𝑇𝑛)𝑛∈ℕ to
a invariant function.

2.1 The Koopman operator

Definition 2.1. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
The linear operator𝑈𝑇 on 𝐿2(𝑋,A, 𝜇) defined by

𝑈𝑇 : 𝐿2(𝑋,A, 𝜇) −→ 𝐿2(𝑋,A, 𝜇)
𝑓 ↦−→ 𝑓 ◦ 𝑇

is called the Koopman operator associated to the transformation 𝑇.

First of all, we shall check 𝑈𝑇 is well-defined. This follows from 𝑇 being measure-
preserving, since if 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), one has

∥ 𝑓 ◦ 𝑇 ∥2
2 =

∫
𝑋

| 𝑓 ◦ 𝑇 |2 d𝜇 =

∫
𝑋

| 𝑓 |2 d(𝑇∗𝜇) =
∫
𝑋

| 𝑓 |2 d𝜇 = ∥ 𝑓 ∥2
2 < ∞.

Moreover,𝑈𝑇 is clearly linear, and in fact by the computation above, we have ∥𝑈𝑇 𝑓 ∥2 =

∥ 𝑓 ∥2 for all 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), i.e. 𝑈𝑇 is an isometry. In particular, ∥𝑈𝑇 ∥ = 1, and𝑈𝑇 is
continuous.

In fact,𝑈𝑇 preserves arbitrary scalar products.

Lemma 2.2. For all 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), it holds that ⟨𝑈𝑇 𝑓 ,𝑈𝑇 𝑔⟩ = ⟨𝑓 , 𝑔⟩.

Proof. This is straightforward, since

⟨𝑈𝑇 𝑓 ,𝑈𝑇 𝑔⟩ =
∫
𝑋

𝑓 (𝑇𝑥)𝑔(𝑇𝑥) d𝜇 =

∫
𝑋

𝑓 (𝑥)𝑔(𝑥) d(𝑇∗𝜇) =
∫
𝑋

𝑓 (𝑥)𝑔(𝑥) d𝜇 = ⟨𝑓 , 𝑔⟩

by the change-of-variables formula. □

The next lemma is a fair reformulation of Proposition 1.14.

Lemma 2.3. A measure-preserving system (𝑋,A, 𝜇, 𝑇) is ergodic if and only if
1 is a simple eigenvalue of𝑈𝑇 .
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Ergodic theory 2.1 The Koopman operator

Proof. The eigenfunctions of 𝑈𝑇 for the eigenvalue 1 are exactly the invariant func-
tions, and they form a one dimensional eigenspace if and only if they are all constant
almost everywhere. The lemma then follows from the equivalence (i)⇐⇒ (iv) in Propo-
sition 1.14, and the fact that 𝐿2(𝑋,A, 𝜇) is dense in 𝐿0(𝑋,A, 𝜇). □

This last observation allows to use Fourier analysis coming from the Hilbert struc-
ture of 𝐿2 to study ergodicity.

Example 2.4. (i) Consider 𝑅𝛼 : 𝕋 −→ 𝕋 an irrational rotation of the torus. Let 𝑓 ∈
𝐿2(𝕋 ) be invariant. Writing its Fourier expansion

𝑓 (𝑥) =
∑︁
𝑛∈ℤ

𝑐𝑛e2𝜋𝑖𝑛𝑥

and using that 𝑓 (𝑅𝛼𝑥) = 𝑓 (𝑥 + 𝛼) = 𝑓 (𝑥), we get
∑︁
𝑛∈ℤ

𝑐𝑛e2𝜋𝑖𝑛𝛼e2𝜋𝑖𝑛𝑥 =
∑︁
𝑛∈ℤ

𝑐𝑛e2𝜋𝑖𝑛𝑥.

Uniqueness of the Fourier coefficients, and the fact that 𝛼 ∉ ℚ, now implies that
𝑐𝑛 = 0 for all 𝑛 ≠ 0, and therefore 𝑓 = 𝑐0 is constant. Thus 𝑅𝛼 is ergodic. Combined
with Example 1.15, we get that

𝑅𝛼 is ergodic ⇐⇒ 𝛼 ∉ ℚ.

(ii) The circle doubling map 𝑇 : 𝕋 −→ 𝕋 , 𝑇 (𝑥) = 2𝑥 mod 1 is ergodic. Again, let
𝑓 ∈ 𝐿2(𝕋 ) be written as

𝑓 (𝑥) =
∑︁
𝑛∈ℤ

𝑐𝑛e2𝜋𝑖𝑛𝑥

with the Parseval identity
∑︁
𝑛∈ℤ

|𝑐𝑛 |2 = ∥ 𝑓 ∥2
2 < ∞. Then the fact that 𝑓 (𝑇𝑥) = 𝑓 (𝑥) and

the uniqueness of the Fourier coefficients yields to 𝑐2𝑛 = 𝑐𝑛 for all 𝑛 ∈ ℤ. Thus, if there
was 𝑛 ≠ 0 with 𝑐𝑛 ≠ 0, it would imply

∑︁
𝑛∈ℤ

|𝑐𝑛 |2 = ∞, which is impossible. Hence 𝑐𝑛 = 0

for all 𝑛 ≠ 0, and 𝑓 = 𝑐0 is constant almost everywhere.
(iii) Let 𝑋 = 𝕋 equipped with its Borel𝜎−algebra and the Lebesgue measure. Consider
𝑅𝛼 an irrational rotation, so that (𝑋, 𝑅𝛼) is ergodic. The function 𝑓 on 𝑋 × 𝑋 defined
by 𝑓 (𝑥, 𝑦) ··= 𝑥 − 𝑦 is invariant under 𝑅𝛼 × 𝑅𝛼, as proved by

𝑓 (𝑅𝛼𝑥, 𝑅𝛼𝑦) = 𝑓 (𝑥 +𝛼, 𝑦 +𝛼) = (𝑥 +𝛼) − (𝑦 +𝛼) = 𝑥 − 𝑦 = 𝑓 (𝑥, 𝑦)

whereas 𝑓 is not almost everywhere constant. This proves (𝑋 × 𝑋, 𝑅𝛼 × 𝑅𝛼) is not
ergodic, providing another example that ergodicity is not preserved under direct prod-
ucts.

These examples can be widely generalized to compact abelian groups. Recall that
a character of a locally compact group is a continuous homomorphism 𝜒 : 𝑋 −→ 𝕊1.
Note that if 𝑇 : 𝑋 −→ 𝑋 is continuous and 𝜒 is a character, then 𝜒 ◦ 𝑇 : 𝑋 −→ 𝕊1 is
also a character. We say that 𝜒 is said to be trivial if 𝜒(𝑥) = 1 for all 𝑥 ∈ 𝑋 .
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Ergodic theory 2.2 The Mean Ergodic Theorem

Proposition 2.5. Let 𝑋 be a compact abelian group, and 𝑇 : 𝑋 −→ 𝑋 be a con-
tinuous surjective homomorphism. Then 𝑇 is ergodic with respect to the Haar
measure 𝑚𝑋 if and only if the identity 𝜒(𝑇𝑛𝑥) = 𝜒(𝑥) for some character 𝜒 of 𝑋
and some 𝑛 > 0 implies that 𝜒 is trivial.

Proof. Suppose 𝜒 is a non-trivial character of 𝑋 , which satisfies 𝜒(𝑇𝑛𝑥) = 𝜒(𝑥) for
some 𝑛 > 0 and all 𝑥 ∈ 𝑋 . Consider the function 𝑓 : 𝑋 −→ ℂ defined by

𝑓 (𝑥) ··= 𝜒(𝑥) + 𝜒(𝑇𝑥) + · · · + 𝜒(𝑇𝑛−1𝑥).

Then we have that 𝑓 ◦𝑇 = 𝑓 , whereas 𝑓 is not constant, as it is the sum of non-trivial
distinct characters. Hence 𝑇 is not ergodic.

Conversely, fix 𝑓 ∈ 𝐿2(𝑋,B(𝑋), 𝑚𝑋 ) an invariant function. It has a Fourier expan-
sion

𝑓 =
∑︁
𝜒

𝑐𝜒𝜒

and additionally ∥ 𝑓 ∥2
2 =

∑︁
𝜒

|𝑐𝜒 |2 < ∞. Since 𝑓 is invariant, we have 𝑐𝜒 = 𝑐𝜒◦𝑇 = 𝑐𝜒◦𝑇2 =

. . . , so for a fixed 𝜒, either 𝑐𝜒 = 0 or there are only finitely many distinct characters
among 𝜒, 𝜒 ◦ 𝑇, 𝜒 ◦ 𝑇2, . . . . It follows there exists 𝑝 > 𝑞 such that 𝜒 ◦ 𝑇 𝑝 = 𝜒 ◦ 𝑇𝑞, so
𝜒 ◦𝑇 𝑝−𝑞 = 𝜒 (the map 𝜒 ↦−→ 𝜒 ◦𝑇 is injective since 𝑇 is surjective). By hypothesis, we
conclude that 𝜒 is trivial, and thus 𝑓 is constant. This proves 𝑇 is ergodic. □

The exact same proof allows one to prove that if 𝐺 is a compact abelian group and
𝑔 ∈ 𝐺, then the group rotation 𝑅𝑔 defined as 𝑅𝑔 (ℎ) = 𝑔ℎ is ergodic with respect to the
Haar measure if and only if the subgroup ⟨𝑔⟩ is dense in 𝐺.

2.2 The Mean Ergodic Theorem

Let us take a closer look at invariant functions. For (𝑋,A, 𝜇, 𝑇) a measure-preserving
system, we denote

Hinv ··= {𝑓 ∈ 𝐿2(𝑋,A, 𝜇) : 𝑈𝑇 𝑓 = 𝑓 }
and its orthogonal Herg ··= H⊥

inv. Note that Hinv = (𝑈𝑇 − IdH )−1({0}) is a closed
subspace of 𝐿2(𝑋,A, 𝜇). In particular, it follows that

𝐿2(𝑋,A, 𝜇) = Hinv ⊕ Herg

and every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) can be written uniquely as 𝑓 = 𝑓inv + 𝑓erg where 𝑓 is an
invariant function and 𝑓erg is orthogonal to all invariant functions. Note that 𝑓inv is
exactly the orthogonal projection of 𝑓 onto the subspace Hinv or, said differently, 𝑓inv is
the element of Hinv for which ∥ 𝑓 − 𝑓inv∥2 is minimal.
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It turns out the subspace Herg can be described more precisely. This requires the
following terminology.

Definition 2.6. A function 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) is a coboundary if there exists 𝑔 ∈
𝐿2(𝑋,A, 𝜇) such that 𝑓 = 𝑔 − 𝑔 ◦ 𝑇.

In the sequel, we will denote C ··= {𝑓 ∈ 𝐿2(𝑋,A, 𝜇) : 𝑓 is a coboundary}. It is
clearly a subspace of 𝐿2(𝑋,A, 𝜇), but it is not closed.

Theorem 2.7. We have C = Herg.

Proof. To begin, observe it is enough to prove that C⊥ = Hinv, and this implies C⊥
=

Hinv, which in turn implies the conclusion by taking orthogonal on both sides. Fix
then 𝑓 ∈ C⊥. Then, since 𝑓 is orthogonal to every coboundary, we have

⟨𝑓 , 𝑓 −𝑈𝑇 𝑓 ⟩ = 0

so that ⟨𝑓 ,𝑈𝑇 𝑓 ⟩ = ⟨𝑓 ,𝑈𝑇 𝑓 ⟩ + ⟨𝑓 , 𝑓 −𝑈𝑇 𝑓 ⟩ = ⟨𝑓 , 𝑓 ⟩ = ∥ 𝑓 ∥2
2. It then follows that

∥ 𝑓 −𝑈𝑇 𝑓 ∥2 = ∥ 𝑓 ∥2
2 + ∥𝑈𝑇 𝑓 ∥2 − 2Re⟨𝑓 ,𝑈𝑇 𝑓 ⟩

= 2∥ 𝑓 ∥2
2 − 2Re∥ 𝑓 ∥2

2
= 0

using that𝑈𝑇 has norm 1. Thus 𝑓 = 𝑈𝑇 𝑓 , and 𝑓 ∈ Hinv. For the converse, fix 𝑓 ∈ Hinv
and 𝑔 ∈ C. We must show that ⟨𝑓 , 𝑔⟩ = 0. Since 𝑔 is a coboundary, write 𝑔 = ℎ−𝑈𝑇ℎ.
Since𝑈𝑇 preserves the inner product, and 𝑓 is invariant, we directly obtain

⟨𝑓 , 𝑔⟩ = ⟨𝑓 , ℎ −𝑈𝑇ℎ⟩ = ⟨𝑓 , ℎ⟩ − ⟨𝑈𝑇 𝑓 ,𝑈𝑇ℎ⟩ = ⟨𝑈𝑇 𝑓 ,𝑈𝑇ℎ⟩ − ⟨𝑈𝑇 𝑓 ,𝑈𝑇ℎ⟩ = 0

and thus 𝑓 ∈ C⊥. This finishes the proof. □

This allows us to already establish the Von Neumann’s Mean Ergodic Theorem.
Let us first state and prove the general case.

Theorem 2.8. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
For every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓 = 𝑓inv

with respect to ∥ · ∥2.
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Proof. Let 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), and write 𝑓 = 𝑓inv + 𝑓erg. Then

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓 =

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓inv +

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓erg = 𝑓inv +

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓erg

so we will be done if we can show that lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓erg = 0. By Theorem 2.7, we can

assume that 𝑓erg is a coboundary, and write 𝑓erg = ℎ −𝑈𝑇ℎ. With this, the last sum is
telescopic, yielding

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓erg =

ℎ −𝑈𝑁
𝑇
ℎ

𝑁
.

Now, we get
ℎ−𝑈𝑁

𝑇
ℎ

𝑁


2 ≤ 2∥ℎ∥2

𝑁
and this last quantity goes to 0 as 𝑁 → ∞. This con-

cludes our proof. □

The quantity studied in this theorem is called an ergodic average, and will be now
a central object for us. To shorten notations sometimes, we will denote

A𝑁 ( 𝑓 ) ··=
1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 ◦ 𝑇𝑛

the 𝑁−th ergodic average of a measurable function 𝑓 : 𝑋 −→ ℂ.

2.3 Consequences of the Mean Ergodic Theorem

First of all, the Mean Ergodic Theorem takes a meaningful form if the system is
ergodic.

Theorem 2.9. Let (𝑋,A), 𝜇, 𝑇) be an ergodic measure-preserving system.
For every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓 =

∫
𝑋

𝑓 d𝜇

with respect to ∥ · ∥2.

Proof. By Theorem 2.8, we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇
𝑓 = 𝑓inv

16
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in 𝐿2−norm. By ergodicity, 𝑓inv must equals a constant almost everywhere, which we
denote by 𝑐. By writing 𝑓 = 𝑓inv + 𝑓erg we get∫

𝑋

𝑓 d𝜇 =

∫
𝑋

𝑓inv d𝜇 +
∫
𝑋

𝑓erg d𝜇 = 𝑐 +
∫
𝑋

𝑓erg d𝜇

and we observe that
∫
𝑋

𝑓erg d𝜇 = ⟨𝑓erg, 1𝑋 ⟩ = 0 since 1𝑋 is obviously invariant and 𝑓erg

is orthogonal to any invariant function. This shows the claim. □

Since an ergodic system has a certain homogeneity, the orbit of a subset 𝐴 ∈ A
should, in average, behaves indepently of any other subset 𝐵 ∈ A. This is confirmed
by the next corollary.

Corollary 2.10. A measure-preserving system (𝑋,A, 𝜇, 𝑇) is ergodic if and only
if

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = 𝜇(𝐴)𝜇(𝐵)

for all 𝐴, 𝐵 ∈ A.

Proof. Suppose first the system is not ergodic, and let 𝐴 ∈ A be an invariant subset
such that 0 < 𝜇(𝐴) < 1. Consider 𝐵 ··= 𝑋 \ 𝐴, which also has 0 < 𝜇(𝐵) < 1. Since
𝑇−𝑛𝐴 = 𝐴 for all 𝑛 ≥ 0, we directly get that

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = lim
𝑁→∞

𝜇(𝐴 ∩ 𝐵) = 𝜇(∅) = 0

while 𝜇(𝐴)𝜇(𝐵) > 0.
Conversely, suppose (𝑋,A, 𝜇, 𝑇) is ergodic. First note that 1𝑇−𝑛𝐴 = 1𝐴◦𝑇𝑛 = 𝑈𝑛

𝑇
1𝐴,

so we can write

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

∫
𝑋

1𝑇−𝑛𝐴1𝐵 d𝜇

= lim
𝑁→∞

∫
𝑋

(
1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇

1𝐴
)
1𝐵 d𝜇.

Using ergodicity, we may apply Theorem 2.9 to obtain that lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇

1𝐴 = 𝜇(𝐴)

in 𝐿2−norm. Since norm convergence implies weak convergence, it follows that

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) =
∫
𝑋

(
lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇

1𝐴
)
1𝐵 d𝜇

17
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=

∫
𝑋

𝜇(𝐴)1𝐵 d𝜇

= 𝜇(𝐴)𝜇(𝐵)
and we are done. □

Since finite linear combinations of indicator functions are dense in 𝐿2(𝑋,A, 𝜇), we
in fact proved that a measure-preserving system (𝑋,A, 𝜇, 𝑇) is ergodic if and only if

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑔⟩

for all 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇).
The next result is a stronger version of the Mean Ergodic Theorem, sometimes

called the Uniform Mean Ergodic Theorem.

Theorem 2.11. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
For every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑁−𝑀→∞

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
𝑓 = 𝑓inv

with respect to ∥ · ∥2.

Proof. We proceed exactly as in the proof of Theorem 2.8. Writing 𝑓 = 𝑓inv + 𝑓erg, it is
enough to prove that

lim
𝑁−𝑀→∞

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
𝑓erg = 0

in 𝐿2−norm. Fix then 𝜀 > 0, and choose ℎ ∈ C a coboundary so that ∥ 𝑓erg − ℎ∥2 < 𝜀
2 .

Write ℎ = 𝑔 −𝑈𝑇 𝑔, and exactly as before we note that 1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
ℎ


2
=

 1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
ℎ −𝑈𝑛+1

𝑇
ℎ


2
=

∥𝑈𝑀
𝑇
ℎ −𝑈𝑁

𝑇
ℎ

𝑁 − 𝑀 ≤ 2∥ℎ∥2
𝑁 − 𝑀

and this last quantity tends to 0 as 𝑁 − 𝑀 → ∞. Therefore we have 1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
ℎ


2
<

𝜀

2

if 𝑁 − 𝑀 is large enough. It thus follows that 1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
𝑓erg


2
=

 1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

(𝑈𝑛
𝑇
𝑓erg −𝑈𝑛

𝑇
ℎ) + 1

𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
ℎ


2
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≤ ∥ 𝑓erg − ℎ∥2 +
 1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝑈𝑛
𝑇
ℎ


2

<
𝜀

2
+ 𝜀

2
= 𝜀

if 𝑁 − 𝑀 is large enough. This concludes the proof. □

Now we use this new version to establish Khintchine’s recurrence theorem. To that
end, recall that a subset 𝑆 = {𝑠0 < 𝑠1 < . . . } of ℕ is syndetic if it has bounded gaps, in
the sense that

sup
𝑖∈ℕ

(𝑠𝑖+1 − 𝑠𝑖) < ∞.

In particular, if 𝐴 contains an infinite syndetic set, then it is itself syndetic.

Theorem 2.12. Let (𝑋,A, 𝜇, 𝑇) be measure-preserving, and let 𝐴 ∈ A.
For all 𝜀 > 0, the set

{𝑛 ∈ ℕ : 𝜇(𝐴 ∩ 𝑇−𝑛𝐴) > 𝜇(𝐴)2 − 𝜀}

is syndetic.

Proof. First, we apply Theorem 2.11 to 1𝐴 to obtain that

lim
𝑁−𝑀→∞

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

1𝑇−𝑛𝐴 = (1𝐴)inv

in ∥ · ∥2. Thus the convergence also holds weakly, and in particular we get

lim
𝑁−𝑀→∞

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝜇(𝑇−𝑛𝐴 ∩ 𝐴) =
〈

lim
𝑁−𝑀→∞

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

1𝑇−𝑛𝐴, 1𝐴
〉
= ⟨(1𝐴)inv, 1𝐴⟩.

Writing 1𝐴 = (1𝐴)inv + (1𝐴)erg, we also have

⟨(1𝐴)inv, 1𝐴⟩ = ∥(1𝐴)inv∥2
2 =

∫
𝑋

(1𝐴)2
inv d𝜇

and by Cauchy-Schwarz it follows that

lim
𝑁−𝑀→∞

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝜇(𝑇−𝑛𝐴 ∩ 𝐴) =
∫
𝑋

(1𝐴)2
inv d𝜇 ≥

( ∫
𝑋

(1𝐴)inv d𝜇
)2

= 𝜇(𝐴)2.
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Fix 𝜀 > 0, and towards a contradiction suppose the given set is not syndetic. This
means there exists arbitrary large intervals of integers [𝑀, 𝑁) such that, for every 𝑛
in this interval, we have 𝜇(𝑇−𝑛𝐴 ∩ 𝐴) ≤ 𝜇(𝐴)2 − 𝜀. This implies that

1
𝑁 − 𝑀

𝑁−1∑︁
𝑛=𝑀

𝜇(𝑇−𝑛𝐴 ∩ 𝐴) ≤ 𝜇(𝐴)2 − 𝜀 < 𝜇(𝐴)2

and this contradicts the above inequality. Thus {𝑛 ∈ ℕ : 𝜇(𝐴∩𝑇−𝑛𝐴) > 𝜇(𝐴)2 − 𝜀} is
syndetic, as claimed. □
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3. The Birkhoff’s Pointwise Ergodic Theorem

In the previous section, we established a convergence in 𝐿2 for ergodic averages of
functions of a measure-preserving system. Another important type of convergence to
consider in measure and probability theory is the convergence almost everywhere, or
almost surely. We show now an analog of Von Neumann’s theorem about almost sure
convergence of ergodic averages associated to a measure-preserving system.

3.1 The Maximal Inequality
The proof of the Pointwise Ergodic Theorem hinges on a technical result called the

maximal inequality.

For 𝑓 ∈ 𝐿1(𝑋,A, 𝜇), let 𝑆0 ··= 0 and 𝑆𝑚(𝑥) ··=
𝑚−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) for 𝑚 ≥ 1 and 𝑥 ∈ 𝑋 .

Also, let 𝐹𝑁 (𝑥) ··= max
0≤𝑚≤𝑁

𝑆𝑚(𝑥), and 𝑃 ··= {𝑥 ∈ 𝑋 : 𝐹𝑁 (𝑥) > 0}.

Proposition 3.1. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
With the above notations, it holds that∫

𝑃

𝑓 d𝜇 ≥ 0.

Proof. Since 𝐹𝑁 (𝑥) ≥ 𝑆𝑚(𝑥) for all 𝑚 = 0, . . . , 𝑁, we have

𝐹𝑁 (𝑇𝑥) + 𝑓 (𝑥) ≥ 𝑆𝑚(𝑇𝑥) + 𝑓 (𝑥) = 𝑆𝑚+1(𝑥)

and thus 𝐹𝑁 (𝑇𝑥) + 𝑓 (𝑥) ≥ max
1≤𝑚≤𝑁

𝑆𝑚(𝑥) for all 𝑥 ∈ 𝑋 . For 𝑥 ∈ 𝑃, we have

max
1≤𝑚≤𝑁

𝑆𝑚(𝑥) = max
0≤𝑚≤𝑁

𝑆𝑚(𝑥)

and hence 𝐹𝑁 (𝑇𝑥) + 𝑓 (𝑥) ≥ max
0≤𝑚≤𝑁

𝑆𝑚(𝑥) = 𝐹𝑁 (𝑥) for all 𝑥 ∈ 𝑃. It thus follows that∫
𝑃

𝑓 (𝑥) d𝜇 ≥
∫
𝑃

𝐹𝑁 (𝑥) − 𝐹𝑁 (𝑇𝑥) d𝜇

=

∫
𝑃

𝐹𝑁 (𝑥) d𝜇 −
∫
𝑃

𝐹𝑁 (𝑇𝑥) d𝜇

≥
∫
𝑋

𝐹𝑁 (𝑥) d𝜇 −
∫
𝑋

𝐹𝑁 (𝑇𝑥) d𝜇

=

∫
𝑋

𝐹𝑁 (𝑥) d𝜇 −
∫
𝑋

𝐹𝑁 (𝑥) d(𝑇∗𝜇)
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using the change of variables formula. As 𝑇 is measure-preserving, the latter differ-
ence is 0. This concludes the proof. □

In measure theory, Markov’s inequality tells that whenever (𝑋,A, 𝜇) is a measure
space and 𝑓 : 𝑋 −→ ℝ is measurable, it holds that

𝜇({𝑥 ∈ 𝑋 : | 𝑓 (𝑥) | ≥ 𝜀}) ≤ 1
𝜀

∫
𝑋

| 𝑓 | d𝜇

for all 𝜀 > 0. Applying it with the ergodic average A𝑁 ( 𝑓 ) of 𝑓 , using the triangle
equality and the fact that 𝑇 is measure-preserving, we get

𝜇

({
𝑥 ∈ 𝑋 :

���� 1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)
���� ≥ 𝜀

})
≤ 1

𝜀

∫
𝑋

| 𝑓 | d𝜇

for all 𝑁 ≥ 1 and 𝜀 > 0. The next result can therefore be seen as a uniform version of
this inequality over 𝑁 ≥ 1. It is sometimes referred as the Maximal Ergodic Theorem.

Theorem 3.2. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
For all 𝑓 ∈ 𝐿1(𝑋,A, 𝜇) and 𝜀 > 0, we have

𝜇

({
𝑥 ∈ 𝑋 : sup

𝑁≥1

���� 1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)
���� ≥ 𝜀

})
≤ 1

𝜀

∫
𝑋

| 𝑓 | d𝜇.

Proof. By writing 𝑓 = 𝑓 + − 𝑓 − into its positive and negative parts, we can assume
without restriction that 𝑓 is positive. By applying Proposition 3.1 to the function 𝑓 −𝜀,
we obtain ∫

𝑃𝑀

𝑓 (𝑥) − 𝜀 d𝜇 ≥ 0

for all 𝑀 ≥ 1, where 𝑃𝑀 ··=
{
𝑥 ∈ 𝑋 | sup

1≤𝑁≤𝑀

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) > 𝜀
}
. Observe that, if

𝑃 ··=
{
𝑥 ∈ 𝑋 | sup

𝑁≥1

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) > 𝜀
}
, then 𝑃 =

⋃
𝑀≥1

𝑃𝑀 and it follows that

∫
𝑃

𝑓 (𝑥) − 𝜀 d𝜇 ≥ 0.

Hence 𝜇(𝑃) ≤ 1
𝜀

∫
𝑃
𝑓 d𝜇 ≤ 1

𝜀

∫
𝑃
| 𝑓 | d𝜇 ≤ 1

𝜀

∫
𝑋
| 𝑓 | d𝜇, and we are done. □
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3.2 The Pointwise Ergodic Theorem
We are now ready to formulate the Pointwise Ergodic Theorem, first in the general

case of an arbitrary measure-preserving system.

Theorem 3.3. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
For every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) = 𝑓inv(𝑥)

for 𝜇−almost every 𝑥 ∈ 𝑋 .

Proof. First, notice that if we prove the existence of a limit 𝐹 of (A𝑁 ( 𝑓 ))𝑁≥1 almost ev-
erywhere, then 𝐹 must be 𝑓inv. Indeed, since (A𝑁 ( 𝑓 ))𝑁≥1 converges to 𝑓inv in 𝐿2−norm,
it has a subsequence that converges almost everywhere to 𝑓inv, but this subsequence
also has to converge to 𝐹 almost everywhere, yielding 𝐹 = 𝑓inv. We are then left to
show the existence of the limit almost everywhere.

Let L be the subset of all real-valued functions 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) for which the limit

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)

exists for 𝜇−almost every 𝑥 ∈ 𝑋 . Our goal is to prove that L = 𝐿2(𝑋,A, 𝜇).
To begin, observe first that L is a subspace of 𝐿2(𝑋,A, 𝜇), and that Hinv ⊂ L. Thus,
it is enough to show that Herg ⊂ L, since we will then have

𝐿2(𝑋,A, 𝜇) = Hinv ⊕ Herg ⊂ L

which implies the conclusion. Fix then 𝑓 ∈ Herg, and 𝜀 > 0. By Theorem 2.7, we can

pick ℎ a coboundary with ∥ 𝑓 −ℎ∥2 ≤ 𝜀2. In particular,
∫
𝑋

| 𝑓 −ℎ| d𝜇 ≤ 𝜀2, and applying
Theorem 3.2 with the function 𝑓 − ℎ, it follows that

𝜇

({
𝑥 ∈ 𝑋 : sup

𝑁≥1

���� 1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) − ℎ(𝑇𝑛𝑥)
���� ≥ 𝜀

})
≤ 1

𝜀

∫
𝑋

| 𝑓 − ℎ| d𝜇 ≤ 𝜀.

Since the lim sup of a sequence of real numbers is bounded by the supremum of this
sequence, and since 𝜇 is increasing, we obtain also

𝜇

({
𝑥 ∈ 𝑋 : lim sup

𝑁→∞

���� 1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) − ℎ(𝑇𝑛𝑥)
���� ≥ 𝜀

})
≤ 𝜀.

23



Ergodic theory 3.2 The Pointwise Ergodic Theorem

Now, ℎ = 𝑔 − 𝑔 ◦ 𝑇 is a coboundary, so its ergodic average is telescopic, and gives
lim
𝑁→∞

A𝑁 (ℎ) = 0 for 𝜇−almost every 𝑥 ∈ 𝑋 . Thus

𝜇

({
𝑥 ∈ 𝑋 : lim sup

𝑁→∞

���� 1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)
���� ≥ 𝜀

})
≤ 𝜀.

As 𝜀 > 0 was arbitrary, this last inequality exactly says that the limit

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)

exists and equals 0 for 𝜇−almost every 𝑥 ∈ 𝑋 . Hence 𝑓 ∈ L, and this finishes the
proof. □

In the ergodic case, we know precisely the orthogonal projection of 𝑓 onto Hinv. This
leads to the next corollary.

Corollary 3.4. Let (𝑋,A, 𝜇, 𝑇) be an ergodic measure-preserving system.
For every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), it holds that

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) =
∫
𝑋

𝑓 d𝜇

for 𝜇−almost every 𝑥 ∈ 𝑋 .

To end this subsection, we prove a pointwise ergodic theorem for non-integrable
functions.

Theorem 3.5. Let (𝑋,A, 𝜇, 𝑇) be an ergodic measure-preserving system and 𝑓

a measurable function with
∫
𝑋

𝑓 d𝜇 = ∞. Then we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) = ∞

for 𝜇−almost every 𝑥 ∈ 𝑋 .

Proof. We start by defining 𝑓 : 𝑋 −→ ℝ ∪ {±∞} by

𝑓 (𝑥) ··= lim inf
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)
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and the measurable subset 𝐴 ··= {𝑥 ∈ 𝑋 : 𝑓 (𝑥) < ∞}. First, 𝑓 is invariant. Indeed, fix
𝑥 ∈ 𝑋 , and note that

𝑁 + 1
𝑁

(
1

𝑁 + 1

𝑁∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥)
)
=

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛(𝑇𝑥)) + 1
𝑁
𝑓 (𝑥).

The left hand side has a subsequence converging to lim inf
𝑁→∞

A𝑁+1( 𝑓 ) = 𝑓 (𝑥), so 𝑓 ≤ 𝑓 ◦𝑇.

Doing the same for the right hand side, we get 𝑓 ≥ 𝑓 ◦ 𝑇, and hence 𝑓 is invariant.
Now we restrict 𝑓 by setting 𝑔 ··= 𝑓 1𝐴. It is a measurable function since 𝑓 and 𝐴 is
measurable. Moreover, we have

𝑔 ◦ 𝑇 (𝑥) =
{
𝑓 (𝑇𝑥) if 𝑓 (𝑇𝑥) < ∞
0 otherwise

=

{
𝑓 (𝑥) if 𝑓 (𝑥) < ∞
0 otherwise

= 𝑔(𝑥)

proving that 𝑔 is also invariant. By ergodicity, 𝑔 must be then constant almost every-
where. We denote this constant by 𝑐. It implies that either 𝜇(𝐴) = 0, in which case we
are done, or 𝜇(𝐴) = 1, and 𝑓 is constant on a full measure subset 𝐴′ of 𝐴. Assume for
a contradiction that this second case occurs. Define, for 𝑚 ≥ 1, the function

𝑓𝑚(𝑥) ··=
{
𝑓 (𝑥) if 𝑓 (𝑥) < 𝑚
0 otherwise

for all 𝑥 ∈ 𝑋 . The sequence ( 𝑓𝑚)𝑚≥1 is in 𝐿∞(𝑋,A, 𝜇), is increasing and converges
pointwise to 𝑓 . It follows from the monotone convergence theorem that also

lim
𝑚→∞

∫
𝑋

𝑓𝑚 d𝜇 =

∫
𝑋

𝑓 d𝜇 = ∞.

Lastly, we let

𝑓𝑚 = lim inf
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓𝑚 ◦ 𝑇𝑛

and we remark that 𝑓𝑚 ≤ 𝑓 for all 𝑚 ≥ 1 since 𝑓𝑚 ≤ 𝑓 for all 𝑚 ≥ 1. This implies that∫
𝑋

𝑓𝑚 d𝜇 ≤
∫
𝑋

𝑓 d𝜇 =

∫
𝐴

𝑓 d𝜇 =

∫
𝐴′
𝑓 d𝜇 = 𝑐

whence 𝑐 = ∞, a contradiction. Hence 𝜇(𝐴) = 0 and we are done. □

3.3 Normal numbers and the Borel’s theorem

Recall that for a subset 𝐴 ⊂ ℕ, its density is the number 𝑑(𝐴) defined as

𝑑(𝐴) ··= lim
𝑁→∞

|𝐴 ∩ {1, . . . , 𝑁}|
𝑁

.
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In words, this corresponds to the proportion that 𝐴 occupies in the integers. For in-
stance, 2ℕ and 2ℕ+1 have density 1

2 , and 10ℕ has density 1
10 . The set of prime numbers

has density 0.
Let now 𝑝 ≥ 2. Any real number 𝑥 ∈ [0, 1) has a base 𝑝 digit expansion, of the form

𝑥 =

∞∑︁
𝑖=1

𝑑𝑖𝑝
−𝑖, 𝑑1, 𝑑2, · · · ∈ {0, . . . , 𝑝 − 1}.

The numbers 𝑑1, 𝑑2, . . . are called the digits of 𝑥 in base 𝑝. The question is therefore
to understand with which frequency each digit appears.

Definition 3.6. A number 𝑥 =
∞∑︁
𝑖=1

𝑑𝑖𝑝
−𝑖 is called normal in base 𝑝 if for all 𝑘 ≥ 1

and 𝑐1, . . . , 𝑐𝑘 ∈ {0, . . . , 𝑝 − 1}, the set

{𝑛 ∈ ℕ : 𝑑𝑛+1 = 𝑐1, . . . , 𝑑𝑛+𝑘 = 𝑐𝑘}

has density 𝑝−𝑘.

Here is then the Borel’s theorem on normal numbers.

Theorem 3.7. For any 𝑝 ≥ 2, almost every real number 𝑥 ∈ [0, 1) is normal in
base 𝑝.

Proof. Given 𝑥 ∈ [0, 1), denote its digits in base 𝑝 as 𝑑𝑖(𝑥), in such a way that

𝑥 =

∞∑︁
𝑖=1

𝑑𝑖(𝑥)𝑝−𝑖.

Fix 𝑘 ≥ 1 and 𝑐1, . . . , 𝑐𝑘 ∈ {0, . . . , 𝑝 − 1}. Consider the set
𝐶 ··= {𝑥 ∈ [0, 1) | 𝑑1(𝑥) = 𝑐1, . . . , 𝑑𝑘(𝑥) = 𝑐𝑘}.

One checks easily that the Lebesgue measure of 𝐶 equals 𝑝−𝑘. On the other hand, the
map 𝑇 : [0, 1) −→ [0, 1), 𝑇 (𝑥) = 𝑝𝑥 mod 1 is a Lebesgue measure-preserving ergodic
transformation of [0, 1) (similarly to Example 2.4(ii)). We can thus apply the Pointwise
Ergodic Theorem with 𝑓 = 1𝐶 to get

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

1𝐶 (𝑇𝑛𝑥) =
∫ 1

0
1𝐶 (𝑥) d𝑥 = 𝑝−𝑘.

for almost every 𝑥 ∈ [0, 1). To conclude it suffices to notice that 1𝐶 (𝑇𝑛𝑥) = 1 if and only
if 𝑑𝑛+1(𝑥) = 𝑐1, . . . , 𝑑𝑛+𝑘(𝑥) = 𝑐𝑘, so that the limit on the left-hand side is precisely the
natural density of {𝑛 ∈ ℕ : 𝑑𝑛+1 = 𝑐1, . . . , 𝑑𝑛+𝑘 = 𝑐𝑘}. □
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3.4 Continued fractions expansion

A continued fraction is an expression of the form

[𝑎0; 𝑎1, 𝑎2, . . . ] = 𝑎0 +
1

𝑎1 + 1
𝑎2+ 1
. . .

where 𝑎0 ∈ ℤ and 𝑎1, 𝑎2, · · · ∈ ℕ. As we will see in this part, any continued fraction
corresponds to a unique irrational number, and any irrational number has a unique
continued fraction expansion.

A finite truncation of a continued fraction [𝑎0; 𝑎1, 𝑎2, . . . ] is the fraction

𝑝𝑛

𝑞𝑛
= 𝑎0 +

1
𝑎1 + 1

𝑎2+... 1
𝑎𝑛−1+ 1

𝑎𝑛

and is called the 𝑛−th convergent to [𝑎0; 𝑎1, 𝑎2, . . . ].
We first establish general properties of the convergents.

Proposition 3.8. Let [𝑎0; 𝑎1, 𝑎2, . . . ] be a continued fraction and denote𝛼𝑛 = 𝑝𝑛
𝑞𝑛

its 𝑛−th convergent. The following holds.

(i) For all 𝑛 ≥ 1, we have

𝑝𝑛+1 = 𝑎𝑛+1𝑝𝑛 + 𝑝𝑛−1,

𝑞𝑛+1 = 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1,

𝑝𝑛+1𝑞𝑛 − 𝑝𝑛𝑞𝑛+1 = (−1)𝑛.

(ii) The number 𝛼 ··= lim
𝑛→∞

𝛼𝑛 exists, is irrational, and satisfies

|𝛼 −𝛼𝑛 | <
1

𝑞𝑛𝑞𝑛+1
.

(iii) One has 𝛼0 < 𝛼2 < 𝛼4 < · · · < 𝛼 < · · · < 𝛼5 < 𝛼3 < 𝛼1.

Proof. (i) We proceed by induction on 𝑛. Note first that 𝑝0 = 𝑎0, 𝑞0 = 1, 𝑝1 = 𝑎0𝑎1 + 1
and 𝑞1 = 𝑎1. So if we set 𝑝−1 = 1 and 𝑞−1 = 0 then the formulas hold for 𝑛 = 0.
Now suppose they have been verified for some 𝑛 ≥ 0. Define �̃� ··= 𝑎𝑛+2𝑝𝑛+1 + 𝑝𝑛 and
�̃� ··= 𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛. Our goal is to prove that ( �̃�, �̃�) = (𝑝𝑛+2, 𝑞𝑛+2) and �̃�𝑞𝑛+1 − 𝑝𝑛+1�̃� =

(−1)𝑛+1. First, one computes that

�̃�𝑞𝑛+1 − 𝑝𝑛+1�̃� = (𝑎𝑛+2𝑝𝑛+1 + 𝑝𝑛)𝑞𝑛+1 − 𝑝𝑛+1(𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛)
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= 𝑝𝑛𝑞𝑛+1 − 𝑝𝑛+1𝑞𝑛
= −(−1)𝑛

= (−1)𝑛+1

using the induction hypothesis. This proves already the third identity, and that �̃� and
�̃� are coprime. Furthermore, observe that

�̃�

�̃�
=
𝑎𝑛+2𝑝𝑛+1 + 𝑝𝑛
𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛

=
𝑎𝑛+2(𝑎𝑛+1𝑝𝑛 + 𝑝𝑛−1) + 𝑝𝑛
𝑎𝑛+2(𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1) + 𝑞𝑛

=
(𝑎𝑛+1 + 1

𝑎𝑛+2
)𝑝𝑛 + 𝑝𝑛−1

(𝑎𝑛+1 + 1
𝑎𝑛+2

)𝑞𝑛 + 𝑞𝑛−1

=

[
𝑎0; 𝑎1, . . . , 𝑎𝑛+1 +

1
𝑎𝑛+2

]
= [𝑎0; 𝑎1, . . . , 𝑎𝑛+1, 𝑎𝑛+2]
=
𝑝𝑛+2
𝑞𝑛+2

and since �̃� and �̃� are coprime, it follows that �̃� = 𝑝𝑛+2 and �̃� = 𝑞𝑛+2, as wanted. This
concludes the induction, and (i) is shown.
(ii) Note that 𝑝𝑛+1𝑞𝑛 − 𝑝𝑛𝑞𝑛+1 = (−1)𝑛 implies

𝑝𝑛+1
𝑞𝑛+1

=
𝑝𝑛

𝑞𝑛
+ (−1)𝑛
𝑞𝑛𝑞𝑛+1

and iterating this relation provides
𝑝𝑛

𝑞𝑛
= 𝑎0 +

𝑛−1∑︁
𝑗=0

(−1) 𝑗
𝑞 𝑗𝑞 𝑗+1

, for all 𝑛 ≥ 1. Now from (i)

we see that
1 = 𝑞0 ≤ 𝑞1 < 𝑞2 < 𝑞3 < . . .

since 𝑎𝑛 ≥ 1 for all 𝑛 ≥ 1. By induction, 𝑞𝑛 ≥ 2 𝑛−2
2 for all 𝑛 ≥ 1. Thus the series

∞∑︁
𝑗=0

(−1) 𝑗
𝑞 𝑗𝑞 𝑗+1

is absolutely convergent, and 𝛼 ··= lim
𝑛→∞

𝑝𝑛

𝑞𝑛
is well-defined. It also satisfies����𝛼 − 𝑝𝑛

𝑞𝑛

���� = ���� ∞∑︁
𝑗=𝑛

(−1) 𝑗
𝑞 𝑗𝑞 𝑗+1

���� < 1
𝑞𝑛𝑞𝑛+1

as desired. We now prove 𝛼 is irrational, by contradiction. Suppose 𝛼 = 𝑎
𝑏

for some
𝑎 ∈ ℤ, 𝑏 ∈ ℕ. The last inequality multiplied by 𝑞𝑛𝑏 then implies |𝑞𝑛𝑎 − 𝑏𝑝𝑛 | < 𝑏

𝑞𝑛+1
,
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which tends to 0 as 𝑛→ ∞. Since 𝑞𝑛𝑎− 𝑏𝑝𝑛 is an integer, we must have 𝑞𝑛𝑎 = 𝑏𝑝𝑛 for
all 𝑛 large enough, and hence 𝑝𝑛

𝑞𝑛
= 𝑎

𝑏
for all 𝑛 large enough. This contradicts the fact

that 𝑞𝑛 → ∞ as 𝑛→ ∞.
(iii) follows from

𝑝𝑛

𝑞𝑛
= 𝑎0 +

𝑛−1∑︁
𝑗=0

(−1) 𝑗
𝑞 𝑗𝑞 𝑗+1

and the fact that in this sum the terms are decreasing and have alternating signs. □

Now we introduce a dynamical approach to the theory of continued fractions.

Definition 3.9. The Gauss map is the map 𝑇 : [0, 1) −→ [0, 1) defined as

𝑇 (𝑥) =
{

1
𝑥

mod 1 if 𝑥 ≠ 0
0 if 𝑥 = 0

and the Gauss measure 𝜇 is given by

𝜇(𝐵) = 1
log 2

∫
𝐵

1
1 + 𝑥 d𝑥

for every Borel set 𝐵 ⊂ [0, 1).

An observation that will be useful in the sequel is that 𝜇 and the Lebesgue measure
on [0, 1) are absolutely continuous with respect to each other, i.e. they share the same
null sets.

The first thing to show is that it is indeed a measure-preserving system.

Lemma 3.10. The map 𝑇 preserves the Gauss measure 𝜇.

Proof. It is enough to prove that 𝜇(𝑇−1( [0, 𝑠])) = 𝜇( [0, 𝑠]) since intervals of this form
generate the Borel 𝜎−algebra on [0, 1). Note that

𝑇−1( [0, 𝑠]) = {0} ∪
{
𝑥 ∈ (0, 1) :

1
𝑥
−
⌊
1
𝑥

⌋
≤ 𝑠

}
=
⋃
𝑘∈ℕ

[
1

𝑘 + 𝑠,
1
𝑘

]
is a disjoint union. Hence we have

𝜇(𝑇−1( [0, 𝑠])) = 1
log 2

∑︁
𝑘∈ℕ

∫ 1
𝑘

1
𝑘+𝑠

1
1 + 𝑥 d𝑥
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=
1

log 2

∑︁
𝑘∈ℕ

(
log

(
1 + 1

𝑘

)
− log

(
1 + 1

𝑘 + 𝑠

))
=

1
log 2

∑︁
𝑘∈ℕ

(
log

(
1 + 𝑠

𝑘

)
− log

(
1 + 𝑠

𝑘 + 1

))
=

1
log 2

∑︁
𝑘∈ℕ

∫ 𝑠
𝑘

𝑠
𝑘+1

1
1 + 𝑥 d𝑥

= 𝜇( [0, 𝑠])

since also [0, 𝑠] =
⋃
𝑘∈ℕ

[
𝑠

𝑘 + 1
,
𝑠

𝑘

]
is a disjoint union. This proves the claim. □

For our dynamical purposes, we will take for granted the following fact.

Proposition 3.11. The map 𝑇 is ergodic with respect to the Gauss measure.

With our previous notations, the continued fraction expansion

𝑥 =
1

𝑎1 + 1
𝑎2+ 1
. . .

of an irrational number 𝑥 ∈ [0, 1) is denoted [0; 𝑎1, 𝑎2, . . . ]. Observe that in this case
𝑇 (𝑥) = 1

𝑥
− 𝑎1 = [0; 𝑎2, 𝑎3, . . . ], so 𝑇 acts as the left shift on the continued fraction

representation of a number.
Next, observe that if 𝑥 = [0; 𝑎1, 𝑎2, . . . ] ∈ [0, 1), then 𝑎1 = 𝑘 if and only if 𝑥 ∈

( 1
𝑘+1 ,

1
𝑘
]. In other words, the continued fraction expansion of all numbers in ( 1

2 , 1]
starts with 𝑎1 = 1, those of numbers in ( 1

3 ,
1
2] starts with 𝑎1 = 2, and so on. We let

then
𝑎(𝑥) =

∑︁
𝑘∈ℕ

𝑘1( 1
𝑘+1 ,

1
𝑘
] (𝑥)

the function that maps 𝑥 ∈ [0, 1) to the first digit in its continued fraction expansion.
Since the Gauss map 𝑇 acts as the left shift on the continued fraction representation
of a real number 𝑥, we can recover all digits of the expansion of 𝑥 through its orbit
𝑥, 𝑇𝑥, 𝑇2𝑥, . . . . More precisely, for any irrational 𝑥 = [0; 𝑎1, 𝑎2, . . . ], we have

𝑎𝑛+1 = 𝑎(𝑇𝑛𝑥)

for all 𝑛 ∈ ℕ ∪ {0}. This establishes a direct link between the dynamical behaviour of
the Gauss map 𝑇 and the continued fraction representation of irrationals in the [0, 1)
interval. This link allows one to invoque Birkhoff’s Pointwise Ergodic Theorem to get
qualitative results about the continued fractions expansion of real numbers.
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Theorem 3.12. The following hold for Lebesgue almost every 𝑥 =

[0; 𝑎1, 𝑎2, . . . ] ∈ (0, 1).

(i) The digit 𝑘 appears in the expansion [𝑎0; 𝑎1, 𝑎2, . . . ] of 𝑥 with frequency

2 log(𝑘 + 1) − log(𝑘) − log(𝑘 + 2)
log 2

.

(ii) lim
𝑁→∞

𝑎1 + · · · + 𝑎𝑁
𝑁

= ∞.

(iii) lim
𝑁→∞

(𝑎1 . . . 𝑎𝑁)
1
𝑁 = 𝐶 where 𝐶 =

∞∏
𝑘=1

(
(𝑘 + 1)2

𝑘(𝑘 + 2)

) log(𝑘)
log 2

.

(iv) If 𝑝𝑛
𝑞𝑛

are the convergents of 𝑥, then lim𝑛→∞
1
𝑛

log |𝑥 − 𝑝𝑛
𝑞𝑛
| = − 𝜋2

6 log(2) . In
particular, |𝑥 − 𝑝𝑛

𝑞𝑛
| = 𝑂(e−𝜆𝑛) for all 0 < 𝜆 < 𝜋2

6 log(2) .

As point (iv) is quite challenging to obtain, we will omit its proof.

Proof. (i) The frequency of the digit 𝑘 in the expansion [𝑎0; 𝑎1, 𝑎2, . . . ] is given by

lim
𝑁→∞

1
𝑁
|{1 ≤ 𝑛 ≤ 𝑁 : 𝑎𝑛 = 𝑘}|.

As observed above, 𝑎𝑛 = 𝑘 if and only if 𝑇𝑛−1𝑥 ∈ ( 1
𝑘+1 ,

1
𝑘
]. Therefore

lim
𝑁→∞

1
𝑁
|{1 ≤ 𝑛 ≤ 𝑁 : 𝑎𝑛 = 𝑘}| = lim

𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

1( 1
𝑘+1 ,

1
𝑘
] (𝑇

𝑛−1𝑥)

= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

1( 1
𝑘+1 ,

1
𝑘
] (𝑇

𝑛𝑥)

=

∫
[0,1)

1( 1
𝑘+1 ,

1
𝑘
] d𝜇(𝑥)

= 𝜇

((
1

𝑘 + 1
,

1
𝑘

] )
using Corollary 3.4 for the third equality, which then holds for 𝜇−almost every 𝑥 ∈
[0, 1). A direct computation yields to

𝜇

((
1

𝑘 + 1
,

1
𝑘

] )
=

1
log 2

∫ 1
𝑘

1
𝑘+1

1
1 + 𝑥 d𝑥 =

2 log(𝑘 + 1) − log(𝑘) − log(𝑘 + 2)
log 2

and thus (i) holds for 𝜇−almost every 𝑥 ∈ [0, 1). Since 𝜇 and the Lebesgue measure
share the same null sets, (i) holds also for Lebesgue almost every 𝑥 ∈ [0, 1).
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(ii) We have

lim
𝑁→∞

𝑎1 + · · · + 𝑎𝑁
𝑁

= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑎(𝑇𝑛𝑥).

Define also 𝑎𝑀 (𝑥) =
𝑀∑︁
𝑘=1

𝑘1( 1
𝑘+1 ,

1
𝑘
] (𝑥) and observe that 𝑎𝑀 converges pointwise to 𝑎 as

𝑀 → ∞. By Corollary 3.4, we have then

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑎𝑀 (𝑇𝑛𝑥) =
∫
[0,1)

𝑎𝑀 d𝜇 =

𝑀∑︁
𝑘=1

𝑘𝜇

((
1

𝑘 + 1
,

1
𝑘

] )
=

1
log 2

𝑀∑︁
𝑘=1

𝑘 log
(
(𝑘 + 1)2

𝑘(𝑘 + 2)

)
for 𝜇−almost every 𝑥 ∈ [0, 1), so also for Lebesgue almost every 𝑥 ∈ [0, 1). The claim

follows by letting 𝑀 → ∞ and using that
∞∑︁
𝑘=1

𝑘 log
(
(𝑘 + 1)2

𝑘(𝑘 + 2)

)
= ∞.

(iii) Define 𝑓 (𝑥) = log(𝑎(𝑥)) and apply Corollary 3.4 to get

lim
𝑁→∞

log((𝑎1 . . . 𝑎𝑁)
1
𝑁 ) = lim

𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑓 (𝑇𝑛𝑥) =
∫
[0,1)

𝑓 d𝜇.

Note that for a fixed 𝑥 ∈ [0, 1), 𝑓 (𝑥) is in fact an integer, equals to 𝑘 if 𝑥 ∈ ( 1
𝑘+1 ,

1
𝑘
], so

that we can write

𝑓 (𝑥) =
∞∑︁
𝑘=1

log(𝑘)1( 1
𝑘+1 ,

1
𝑘
] (𝑥).

A straightforward calculation shows then that∫
[0,1)

𝑓 d𝜇 =

∞∑︁
𝑘=1

log(𝑘)
log 2

∫ 1
𝑘

1
𝑘+1

1
1 + 𝑥 d𝑥 = log(𝐶)

where 𝐶 ··=
∞∏
𝑘=1

(
(𝑘 + 1)2

𝑘(𝑘 + 2)

) log(𝑘)
log 2

. This proves (iii). □

3.5 Beatty sequences

This short subsection is devoted to another application of ergodic theory to number
theory. Recall that the floor function ⌊·⌋ : ℝ −→ ℤ takes any real number 𝑥 to the
integer ⌊𝑥⌋ such that ⌊𝑥⌋ < 𝑥 ≤ ⌊𝑥⌋ + 1.

Definition 3.13. A Beatty sequence is a sequence of integers of the form
(⌊𝑛𝛼⌋)𝑛≥1 where 𝛼 > 1 is an irrational number.
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In the proof of the result below, we even do not need to apply Birkhoff’s Theorem.
It just suffices to translate the problem suitably into a dynamical setting.

Theorem 3.14. The complement of a Beatty sequence is a Beatty sequence.

Proof. Let 𝐴 ··= {⌊𝑛𝛼⌋ | 𝑛 ≥ 1} and 𝐵 ··= {⌊𝑛𝛽⌋ | 𝑛 ≥ 1}, where 1
𝛼 + 1

𝛽 = 1. Note that
also 𝛽 is irrational since 𝛼 is irrational. We will show that 𝐴 and 𝐵 form a partition of
ℕ. Denote by 𝑅𝛼−1 and 𝑅𝛽−1 the toral rotations by 𝛼−1 and 𝛽−1 respectively. Observe
that

𝑚 ∈ 𝐴⇐⇒ ∃𝑛 ≥ 1, 𝑚 = ⌊𝑛𝛼⌋
⇐⇒ 𝑛𝛼 − 1 < 𝑚 ≤ 𝑛𝛼

⇐⇒ 𝑛 − 1
𝛼

<
𝑚

𝛼
≤ 𝑛

⇐⇒
{
𝑚

𝛼

}
∈
(
1 − 1

𝛼
, 1
]

which shows that 𝐴 =
{
𝑚 ∈ ℕ | 𝑅𝑚

𝛼−1 (0) ∈
(
1− 1

𝛼 , 1
]}

. One obtains a similar description
for 𝐵, with 𝛼 replaced by 𝛽. Now for all 𝑚 ≥ 1 we have{

𝑚

𝛼

}
+
{
𝑚

𝛽

}
=
𝑚

𝛼
+ 𝑚
𝛽

−
⌊
𝑚

𝛼

⌋
−
⌊
𝑚

𝛽

⌋
= 𝑚 −

⌊
𝑚

𝛼

⌋
−
⌊
𝑚

𝛽

⌋
so the left-hand side is an integer equals to either 0, 1 or 2, and we easily see it cannot
be 0 or 2. Thus

{
𝑚
𝛼

}
+
{
𝑚
𝛽

}
= 1, and we deduce then

𝑚 ∈ 𝐵⇐⇒ 𝑅𝑚
𝛽−1 (0) ∈

(
1 − 1

𝛽
, 1
]
⇐⇒ 𝑅𝑚

𝛼−1 (0) ∈
[
0, 1 − 1

𝛼

)
⇐⇒ 𝑚 ∉ 𝐴

so that 𝐵 = ℕ \ 𝐴, as announced. □
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4. Classifying measure-preserving systems

In ergodic theory, protagonists are measure-preserving systems, and as any other
structured object in mathematics it is natural to develop the tools to classify them.
We want to understand when the dynamical behaviour of two measure-preserving
systems are independent, correlated, or identical. We will essentially turn our atten-
tion to two types of systems, arising naturally everywhere, and that will play a crucial
role in the next section.

4.1 Factors, extensions, isomorphisms

To reasonably classify some dynamical systems, we need to adopt several termi-
nologies.

Definition 4.1. Let (𝑋,A, 𝜇, 𝑇), (𝑌,B, 𝜈, 𝑆) be measure-preserving systems.
A measurable map 𝜋 : 𝑋 −→ 𝑌 is a factor map if

(i) 𝜋(𝑋) has full measure.

(ii) 𝜋∗𝜇 = 𝜈.

(iii) 𝜋 ◦ 𝑇 (𝑥) = 𝑆 ◦ 𝜋(𝑥) for 𝜇−a.e. 𝑥 ∈ 𝑋 .

The first condition means that 𝜋 is almost surjective, in the sense that the com-
plement of its image has zero measure. When a map satisfies (iii) above, we say it
intertwines the transformations 𝑇 and 𝑆.

When there is a factor map from 𝑋 to 𝑌 , we say that (𝑋,A, 𝜇, 𝑇) is an extension
of (𝑌,B, 𝜈, 𝑆), and that (𝑌,B, 𝜈, 𝑆) is a factor of (𝑋,A, 𝜇, 𝑇).

We can now state a reasonable definition of isomorphic measure-preserving sys-
tems.

Definition 4.2. A factor map 𝜑 : 𝑋 −→ 𝑌 between two measure-preserving sys-
tems (𝑋,A, 𝜇, 𝑇) and (𝑌,B, 𝜈, 𝑆) is called an isomorphism if there exists a fac-
tor map 𝜓 : 𝑌 −→ 𝑋 such that 𝜓 ◦ 𝜑 and 𝜑 ◦ 𝜓 are almost everywhere the
identities.

When this occurs, we say 𝑋 and 𝑌 are isomorphic.

Example 4.3. Consider 𝑋 = 𝑌 = 𝕋 the torus, along with its Borel 𝜎−algebra and 𝜇
the Lebesgue measure. Consider 𝑅𝛼 a rotation, and 𝑇 the doubling map. Then these
two systems are not isomorphic. To reach a contradiction, suppose there is a factor
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map
𝜑 : (𝑋,B(𝑋), 𝜇, 𝑇) −→ (𝑋,B(𝑋), 𝜇, 𝑅𝛼)

invertible on a full measure subset 𝑈 ⊂ 𝑋 . Then 𝜑 ◦ 𝑇 = 𝑅𝛼 ◦ 𝜑 on 𝑈, and since
𝑅𝛼 is invertible on 𝑈, 𝑇 has to be invertible on 𝑈. Now, note that for any 𝑥 ∈ 𝑈,
𝑇 (𝑥 + 1

2) = 2𝑥 = 𝑇 (𝑥), and injectivity then forces 𝑥 + 1
2 ∉ 𝑈. But then 1 = 𝑚𝑋 (𝑈) ≤ 1

2 ,
a contradiction.

4.2 Kronecker systems

The first class of dynamical systems we study consists of those whose behaviour is,
in some sense, predictable.

Definition 4.4. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
A non-zero function 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) is an eigenfunction for 𝑇 if there exists
𝜆 ∈ ℂ so that 𝑓 ◦ 𝑇 = 𝜆𝑓 𝜇−almost everywhere.

In that case, we say 𝜆 is the eigenvalue associated to 𝑓 . Observe that 𝑓 is an eigen-
function if it is an eigenvector for the Koopman operator𝑈𝑇 on 𝐿2(𝑋,A, 𝜇).

The set of all eigenvalues of 𝑈𝑇 is called the point-spectrum of 𝑇 and is denoted
𝜎(𝑇). An eigenvalue is simple if its eigenspace is one-dimensional.

Let us first look at some basic properties of eigenfunctions.

Lemma 4.5. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.

(i) The set 𝜎(𝑇) is a subgroup of (𝕊1, ·), where 𝕊1 ⊂ ℂ is the unit circle.

(ii) If 𝑓 , 𝑔 are eigenfunctions with eigenvalues 𝜆 𝑓 and 𝜆𝑔 and if 𝜆 𝑓 ≠ 𝜆𝑔, then
⟨𝑓 , 𝑔⟩ = 0.

(iii) If the system is ergodic, then for every eigenfunction 𝑓 , | 𝑓 | is constant al-
most everywhere, and every eigenvalue is simple.

Proof. (i) To start, fix 𝜆 ∈ 𝜎(𝑇), and let 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) be an eigenfunction of eigen-
value 𝜆. Then, using Lemma 2.2, we have

∥ 𝑓 ∥2
2 = ⟨𝑓 , 𝑓 ⟩ = ⟨𝑈𝑇 𝑓 ,𝑈𝑇 𝑓 ⟩ = ⟨𝜆𝑓 ,𝜆𝑓 ⟩ = |𝜆 |2⟨𝑓 , 𝑓 ⟩ = |𝜆 |2∥ 𝑓 ∥2

2.

Using that ∥ 𝑓 ∥ ≠ 0, we get |𝜆 | = 1, hence 𝜆 ∈ 𝕊1. Also note that 𝑓 is an eigenfunction
with eigenvalue 𝜆 = 𝜆−1, proving that 𝜆−1 ∈ 𝜎(𝑇). Lastly, if 𝜆 and 𝜇 are two eigen-
values with eigenfunctions 𝑓 and 𝑔, then 𝑓 𝑔 is an eigenfunction with eigenvalue 𝜆𝜇,
proving 𝜆𝜇 ∈ 𝜎(𝑇). Thus 𝜎(𝑇) is a subgroup of 𝕊1.
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(ii) Again, since𝑈𝑇 preserves inner products, one has

⟨𝑓 , 𝑔⟩ = ⟨𝑈𝑇 𝑓 ,𝑈𝑇 𝑔⟩ = 𝜆 𝑓𝜆𝑔⟨𝑓 , 𝑔⟩

and since 𝜆 𝑓 ≠ 𝜆𝑔, the only way this equation holds is to have ⟨𝑓 , 𝑔⟩ = 0.

(iii) Suppose 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) is an eigenfunction with eigenvalue 𝜆. Then it follows
that

| 𝑓 | ◦ 𝑇 (𝑥) = | 𝑓 (𝑇𝑥) | = |𝜆𝑓 (𝑥) | = | 𝑓 | (𝑥)
for 𝜇−almost every 𝑥 ∈ 𝑋 . Hence | 𝑓 | is almost everywhere invariant, and by ergodic-
ity, | 𝑓 | is almost everywhere constant, as claimed. Finally, if 𝑓1 and 𝑓2 are two eigen-
functions with the same eigenvalue 𝜆, then 𝑓1

𝑓2
is invariant, and thus constant almost

everywhere by ergodicity. This implies 𝑓1 is a scalar multiple of 𝑓2, and concludes the
proof. □

Remarquably, the converse of (i) above is also true, namely every countable sub-
group of 𝕊1 can be realized as the spectrum of an ergodic measure-preserving system.

Example 4.6. Let (𝑋,A, 𝜇, 𝑇) be a circle rotation, i.e. 𝑋 = [0, 1] is equipped with
its Borel 𝜎−algebra A, 𝜇 is the Lebesgue measure, and 𝑇 (𝑥) = 𝑥 + 𝛼 mod 1. The
function 𝑓 (𝑥) = e2𝜋𝑖𝑥 is an eigenfunction, since

𝑈𝑇 𝑓 (𝑥) = 𝑓 (𝑇𝑥) = 𝑓 (𝑥 +𝛼) = e2𝜋𝑖(𝑥+𝛼) = e2𝜋𝑖𝛼 𝑓 (𝑥)

and the corresponding eigenvalue is e2𝜋𝑖𝛼. In fact, all eigenfunctions are of the form
𝑥 ↦−→ 𝑐e2𝜋𝑖𝑛𝑥 for some 𝑐 ∈ ℂ and 𝑛 ∈ ℤ, and the eigenvalues are e2𝜋𝑖𝑛𝛼. Indeed, fix
𝑓 ∈ 𝐿2(𝑋,A, 𝜇) an arbitrary eigenfunction, and write its Fourier expansion as

𝑓 (𝑥) =
∑︁
𝑛∈ℤ

𝑐𝑛e2𝜋𝑖𝑛𝑥.

Using that 𝑓 (𝑥 +𝛼) = 𝜆𝑓 (𝑥), and the uniqueness of the Fourier coefficients, it follows
that

𝑐𝑛e2𝜋𝑖𝑛𝛼 = 𝜆𝑐𝑛

for all 𝑛 ∈ ℤ. If there is two integers 𝑛 ≠ 𝑚 such that 𝑐𝑛, 𝑐𝑚 ≠ 0, then 𝜆 = e2𝜋𝑖𝑛𝛼 and
also 𝜆 = e2𝜋𝑖𝑚𝛼, which is excluded. Thus 𝑐𝑛 ≠ 0 for exactly one integer 𝑛 ∈ ℤ, proving
the claim.

This example can be generalized in a strong manner to arbitrary group rotations.

Proposition 4.7. Let (𝑋,A, 𝜇, 𝑇) be a group rotation.
Then there exists a basis of 𝐿2(𝑋,A, 𝜇) consisting of eigenfunctions of 𝑇.
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Proof. Recall that a character of 𝑋 is a continuous homomorphism 𝜒 : 𝑋 −→ 𝕊1. By
the Stone-Weierstrass theorem, finite linear combinations of characters are dense in
𝐿2, and any two distinct characters are orthogonal. Moreover, such a character is
clearly an eigenfunction, since

𝜒(𝑇𝑥) = 𝜒(𝑥 +𝛼) = 𝜒(𝛼)𝜒(𝑥)

and the corresponding eigenvalue is 𝜒(𝛼). Thus we are done. □

Such measure-preserving systems are important, and therefore get their own name.

Definition 4.8. A measure-preserving system (𝑋,A, 𝜇, 𝑇) has discrete spec-
trum if there exists a basis of 𝐿2(𝑋,A, 𝜇) consisting of eigenfunctions of 𝑇.
Moreover, if (𝑋,A, 𝜇, 𝑇) is ergodic it is called a Kronecker system.

So, with this terminology, Proposition 4.7 tells precisely that an ergodic group ro-
tation is a Kronecker system. It turns out it is essentially the only way of constructing
such systems.

Theorem 4.9. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, with (𝑋,A, 𝜇)
being a standard probability space. Then (𝑋,A, 𝜇, 𝑇) is a Kronecker system if
and only if it is isomorphic to an ergodic group rotation.

A standard probability is any probability space which is measurably isomorphic
to (𝑋,A, 𝜇) where 𝑋 is compact metric, A is the Borel 𝜎−algebra, and 𝜇 is a Borel
probability measure on 𝑋 .

Proof. That every ergodic group rotation is a Kronecker system is the content of Propo-
sition 4.7. Let us then prove the converse. Since (𝑋,A, 𝜇) is isomorphic to a standard
probability space, we can assume without loss of generality that 𝑋 is compact metric,
A is the Borel 𝜎−algebra and 𝜇 is a Borel probability measure. Let 𝜒1, 𝜒2, . . . be an
orthonormal basis of 𝐿2(𝑋,A, 𝜇) consisting of eigenfunctions, and denote 𝜆1,𝜆2, . . .
the corresponding eigenvalues. In view of Lemma 4.5(iii), we may assume that 𝜒𝑛
takes values in 𝕊1. Let then

𝜑 : 𝑋 −→ 𝕊ℕ

be the map defined as 𝜑(𝑥) ··= (𝜒1(𝑥), 𝜒2(𝑥), . . . ). Also let 𝛼 ··= (𝜆1,𝜆2, . . . ) ∈ 𝕊ℕ and
𝑌 ··= {𝛼𝑛 | 𝑛 ∈ ℤ}. Then 𝑌 is a subgroup of 𝕊ℕ. Moreover this product is compact by
Tychonoff’s theorem, and𝑌 is closed by definition, so𝑌 is also compact. Consider then
B the Borel 𝜎−algebra on 𝑌 , 𝜈 its normalized Haar measure, and the transformation
𝑆(𝑦) ··= 𝛼𝑦. The system (𝑌,B, 𝜈, 𝑆) is a group rotation, and we claim it is isomorphic
to (𝑋,A, 𝜇, 𝑇).

First, we prove that 𝜑 is an isomorphism between 𝑋 and (𝑌∗,B∗, 𝜈∗, 𝑆), where
𝑌∗ = 𝜑(𝑋), B∗ is the Borel 𝜎−algebra restricted to 𝑌∗, and 𝜈∗ = 𝜑∗𝜇. Note that by
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definition we have

𝜑(𝑇𝑥) = (𝜒1(𝑇𝑥), 𝜒2(𝑇𝑥), . . . ) = (𝜆1𝜒1(𝑥),𝜆2𝜒2(𝑥), . . . ) = 𝛼𝜑(𝑥) = 𝑆(𝜑(𝑥))

so 𝜑 intertwines 𝑇 and 𝑆. Moreover clearly its image has full measure in 𝑌∗, and
𝜈∗ is the pushforward of 𝜇 under 𝜑. Thus 𝜑 is a factor map. Also it is surjective by
definition. Hence we only need to prove it is almost everywhere injective. Denote 𝑑 the
metric on 𝑋 , and fix 𝜀 > 0. We are going to show there is a set of measure at least 1−𝜀
on which 𝜑 is almost injective. Let 𝐵1, . . . , 𝐵𝑟 be a finite collection of balls of radius at
most 𝜀 that cover 𝑋 . Such a cover exists because 𝑋 is compact. Since 𝜒1, 𝜒2, . . . form
a basis of 𝐿2(𝑋,A, 𝜇), the subspace span{𝜒1, 𝜒2, . . . } is dense in 𝐿2(𝑋,A, 𝜇), so we
can find 𝑓1, . . . , 𝑓𝑟 ∈ span{𝜒1, 𝜒2, . . . } so that

∥ 𝑓𝑖 − 1𝐵𝑖 ∥2 ≤ 𝜀

2𝑟

for all 𝑖 = 1, . . . , 𝑟. Let Δ𝜀 ··=
{
𝑥 ∈ 𝑋 : max

1≤𝑖≤𝑟
| 𝑓𝑖(𝑥) − 1𝐵𝑖 (𝑥) | ≥

1
2
}
. By Chebyshev’s

inequality, one has then

𝜇(Δ𝜀) ≤ 2
∫
𝑋

max
1≤𝑖≤𝑟

| 𝑓𝑖(𝑥) − 1𝐵𝑖 (𝑥) | d𝜇(𝑥)

≤
𝑟∑︁
𝑖=1

2
∫
𝑋

| 𝑓𝑖(𝑥) − 1𝐵𝑖 (𝑥) | d𝜇(𝑥)

≤ 2𝑟
𝜀

2𝑟
= 𝜀

using that ∥ · ∥1 ≤ ∥ · ∥2. Set then Ω𝜀 ··= 𝑋 \ Δ𝜀, and note that 𝜇(Ω𝜀) ≥ 1 − 𝜀. Let
𝑥, 𝑦 ∈ Ω𝜀 and suppose 𝜑(𝑥) = 𝜑(𝑦). By definition of 𝜑, this means 𝜒𝑖(𝑥) = 𝜒𝑖(𝑦) for all
𝑖 ≥ 1, and in particular it implies 𝑓𝑖(𝑥) = 𝑓𝑖(𝑦) for all 𝑖 = 1, . . . , 𝑟. We therefore get

|1𝐵𝑖 (𝑥) − 1𝐵𝑖 (𝑦) | = |1𝐵𝑖 (𝑥) − 𝑓𝑖(𝑥) + 𝑓𝑖(𝑦) − 1𝐵𝑖 (𝑦) |
≤ |1𝐵𝑖 (𝑥) − 𝑓𝑖(𝑥) | + | 𝑓𝑖(𝑦) − 1𝐵𝑖 (𝑦) |

<
1
2
+ 1

2
= 1

and so 1𝐵𝑖 (𝑥) = 1𝐵𝑖 (𝑦) for all 𝑖 = 1, . . . , 𝑟. We deduce that 𝑥 and 𝑦 are in a common ball,
meaning 𝑑(𝑥, 𝑦) ≤ 𝜀. This proves that 𝜑 is almost injective on Ω𝜀. Finally, consider

Ω ··=
⋂
𝑛≥1

⋃
𝑘≥𝑛

Ω 1
𝑘

and note that by monotonicity Ω has full measure. Moreover if 𝑥, 𝑦 ∈ Ω are so that
𝜑(𝑥) = 𝜑(𝑦), then 𝑑(𝑥, 𝑦) ≤ 1

𝑛
for all 𝑛 ≥ 1 by what we have shown above, so in fact

𝑥 = 𝑦, and 𝜑 is injective on Ω. This concludes the proof that 𝜑 is an isomorphism.
It remains to prove now that (𝑌∗,B∗, 𝜈∗, 𝑆) and (𝑌,B, 𝜈, 𝑆) are isomorphic. Con-

sider the quotient 𝕊ℕ/𝑌 and the natural projection 𝜋 : 𝕊ℕ −→ 𝕊ℕ/𝑌 . Consider 𝜌 the
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push-forward of 𝜈∗ under 𝜋. If it not a point mass, then we find a subset 𝐶 of the
quotient with 0 < 𝜌(𝐶) < 1. The set 𝐴 = 𝜋−1(𝐶) is then an invariant subset of 𝑌∗

with 0 < 𝜈∗(𝐶) < 1, which is impossible because (𝑌∗,B∗, 𝜈∗, 𝑆) is ergodic. Hence
𝜌 is a point mass, and we denote 𝑢𝑌 its support. It is now direct to prove that the
map 𝜓 (𝑦) = 𝑢𝑦 is an isomorphism from (𝑌,B, 𝜈, 𝑆) to (𝑌∗,B∗, 𝜈∗, 𝑆) and we leave the
details to the interested reader. □

4.3 Weakly mixing systems

On the other hand, we are now going to characterize some systems that tend to be
unpredictable.

Definition 4.10. A measure-preserving system (𝑋,A, 𝜇, 𝑇) is weak-mixing if
the product system (𝑋 × 𝑋,A ⊗ A, 𝜇 ⊗ 𝜇, 𝑇 × 𝑇) is ergodic.

The following proposition provides several equivalent characterizations of weak-
mixing systems.

Theorem 4.11. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system. The following
are equivalent.

(i) The system (𝑋,A, 𝜇, 𝑇) is weak-mixing.

(ii) For any ergodic measure-preserving system (𝑌,B, 𝜈, 𝑆), the product (𝑋 ×
𝑌,A ⊗ B, 𝜇 ⊗ 𝜈, 𝑇 × 𝑆) is ergodic.

(iii) For any 𝐴, 𝐵 ∈ A, we have

lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

|𝜇(𝐴 ∩ 𝑇−𝑛𝐵) − 𝜇(𝐴)𝜇(𝐵) | = 0.

(iv) For any 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ − ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑔⟩| = 0.

(v) For any 𝐴, 𝐵 ∈ A, there exists 𝐸 ⊂ ℕ with zero density such that

lim
𝑛→∞, 𝑛∉𝐸

𝜇(𝐴 ∩ 𝑇−𝑛𝐵) = 𝜇(𝐴)𝜇(𝐵).
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Proof. (i) =⇒ (iv) : Suppose 𝑋 is weak mixing. Fix 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇). Replacing 𝑓

by 𝑓 −
∫
𝑋
𝑓 d𝜇 if necessary, we can assume that

∫
𝑋

𝑓 d𝜇 = 0. By Cauchy-Schwartz
inequality, we have

lim sup
𝑁→∞

(
1
𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩|

)2
≤ lim sup

𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩|2

= lim sup
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

⟨𝑈𝑛
𝑇×𝑇 ( 𝑓 ⊗ 𝑓 ), 𝑔 ⊗ 𝑔⟩

= ⟨ lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑈𝑛
𝑇×𝑇 ( 𝑓 ⊗ 𝑓 ), 𝑔 ⊗ 𝑔⟩

and the last equality holds because the product of 𝑋 with itself is ergodic, so Theorem

2.9 implies that lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑈𝑛
𝑇×𝑇 ( 𝑓 ⊗ 𝑓 ) =

∫
𝑋×𝑋

𝑓 ⊗ 𝑓 d𝜇⊗𝜇 in 𝐿2−norm, and therefore

also weakly, allowing the exchange of the limit and the inner product. Now∫
𝑋×𝑋

𝑓 ⊗ 𝑓 d𝜇 ⊗ 𝜇 =

( ∫
𝑋

𝑓 d𝜇
)2

= 0

and thus (iv) holds.
(iv) =⇒ (iii) : apply (iv) with 𝑓 = 1𝐴 and 𝑔 = 1𝐵.
(iii) =⇒ (iv) : this follows from (iii) and the fact that finite linear combinations of
indicator functions are dense in 𝐿2(𝑋,A, 𝜇).
(iii) =⇒ (v) : For 𝑚 ∈ ℕ, let 𝐴𝑚 ··= {𝑛 ∈ ℕ | |𝜇(𝑇−𝑛𝐴 ∩ 𝐵) − 𝜇(𝐴)𝜇(𝐵) | > 1

𝑚
}. Then

one has
|𝐴𝑚 ∩ {1, . . . , 𝑁}|

𝑁
≤ 𝑚

𝑁

𝑁∑︁
𝑛=1

|𝜇(𝑇−𝑛𝐴 ∩ 𝐵) − 𝜇(𝐴)𝜇(𝐵) |

and letting 𝑁 → ∞ and using (iii), we get 𝑑(𝐴𝑚) = 0. Henceforth, for 𝑚 ∈ ℕ, we can
find 𝑁𝑚 ∈ ℕ so that

𝑁 ≥ 𝑁𝑚 =⇒ |𝐴𝑚 ∩ {1, . . . , 𝑁}|
𝑁

≤ 1
𝑚
.

Define then 𝐸 ··=
∞⋃
𝑚=1

(𝐴𝑚∩[𝑁𝑚+1, 𝑁𝑚+1)). Since 𝐴𝑚 ⊂ 𝐴𝑚+1, for𝑁 ∈ ℕ, we can choose

𝑚 ∈ ℕ so that 𝑁 ∈ [𝑁𝑚 + 1, 𝑁𝑚+1), and hence 𝐸 ∩ {1, . . . , 𝑁} ⊂ 𝐴𝑚 ∩ {1, . . . , 𝑁}. This
provides |𝐸 ∩ {1, . . . , 𝑁}| ≤ 𝑁

𝑚
, and thus 𝑑(𝐸) = 0 as well.

(v) =⇒ (iii) : It suffices to observe that

1
𝑁

𝑁∑︁
𝑛=1

|𝜇(𝑇−𝑛𝐴 ∩ 𝐵) − 𝜇(𝐴)𝜇(𝐵) | = 1
𝑁

∑︁
𝑛∈𝐸∩{1,...,𝑁}

|𝜇(𝑇−𝑛𝐴 ∩ 𝐵) − 𝜇(𝐴)𝜇(𝐵) |
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+ 1
𝑁

∑︁
𝑛∈{1,...,𝑁}\𝐸

|𝜇(𝑇−𝑛𝐴 ∩ 𝐵) − 𝜇(𝐴)𝜇(𝐵) |

and that the first term is 0 since bounded by 𝑑(𝐸), and the second goes to 0 as 𝑁 → ∞
by (v).
(iv) =⇒ (ii) : To come.
(ii) =⇒ (i) : It suffices to prove that (𝑋,A, 𝜇, 𝑇) is ergodic, since therefore it will follow
from (ii) applied with 𝑌 = 𝑋 that the product of 𝑋 with itself is ergodic, i.e. 𝑋 is
weak-mixing. Hence, for a contradiction, suppose that 𝑋 is not ergodic, and let 𝐴 ∈
A be a non-trivial invariant set. Consider (𝑌,B, 𝜈, 𝑆) the ergodic one-point system.
Then 𝐴 × 𝑌 is a non-trivial invariant set of the product system 𝑋 × 𝑌 . But by (ii),
𝑋 × 𝑌 is ergodic, so has no non-trivial invariant sets. Thus (𝑋,A, 𝜇, 𝑇) is ergodic as
announced. □

This theorem has the following immediate consequences.

Corollary 4.12. Let (𝑋,A, 𝜇, 𝑇) be a weak mixing system. Then the following
holds.
(i) The system (𝑋,A, 𝜇, 𝑇) is ergodic.
(ii) The 𝑘−fold product (𝑋 𝑘,A𝑘, 𝜇⊗𝑘, 𝑇𝑘) is weak-mixing.
(iii) All eigenfunctions of 𝑇 are constant almost everywhere.

Point (iii) above is an opposite version of having discrete spectrum, and thus sys-
tems with this property are said to have continuous spectrum. Then, weak mixing
systems have continuous spectrum.

Proof. (i) directly follows from point (iv) of the previous theorem, and Corollary 2.10.
(ii) By induction, it is enough to prove the case 𝑘 = 2. 𝑋 being weak mixing means
𝑋 × 𝑋 is ergodic. Therefore, by (ii) of Theorem 4.11, we deduce that 𝑋 × 𝑋 × 𝑋 is
ergodic. Applying this one more time, it follows that 𝑋 ×𝑋 ×𝑋 ×𝑋 is ergodic, meaning
that 𝑋 × 𝑋 is weak mixing.
(iii) Let 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) be an eigenfunction of 𝑈𝑇 , and 𝜆 ∈ 𝕊1 be the corresponding
eigenvalue. Observe that, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋 , one has

𝑈𝑇×𝑇 ( 𝑓 ⊗ 𝑓 ) (𝑥, 𝑦) = 𝑓 ⊗ 𝑓 (𝑇𝑥,𝑇𝑦) = 𝑓 (𝑇𝑥) 𝑓 (𝑇𝑦) = 𝜆𝑓 (𝑥)𝜆𝑓 (𝑦) = 𝑓 ⊗ 𝑓 (𝑥, 𝑦)

using that 𝜆𝜆 = |𝜆 |2 = 1. Thus 𝑓 ⊗ 𝑓 is invariant under 𝑈𝑇×𝑇 , and since (𝑋 × 𝑋,A ⊗
A, 𝜇⊗𝜇, 𝑇×𝑇) is ergodic, Proposition 1.16 implies 𝑓 ⊗ 𝑓 is constant almost everywhere.
Hence 𝑓 is also constant almost everywhere, proving the claim. □
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It turns out that, in fact, having all eigenfunctions almost everywhere constant
characterize weak mixing systems. This result will follow from the Jacobs-de Leeuw-
Glicksberg decomposition established in the next section.

However, the converse of (i) in Corollary 4.12 is not true, i.e. an ergodic system is
not necessarily weak mixing. Consider for instance an ergodic group rotation, such as
𝑅𝛼 : 𝕋 −→ 𝕋 with 𝛼 ∉ ℚ.

The next proposition shows we can actually relax the condition (iv) in Theorem 4.11.

Proposition 4.13. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system
Then it is weak mixing if and only if for any 𝑓 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩ − ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑓 ⟩| = 0.

Proof. =⇒ : If the system is weak mixing, it satisfies point (iv) of Theorem 4.11, which
we may apply with 𝑔 = 𝑓 to get the claim.
⇐= : This direction relies on the following two identities, usually called polarization
identities, namely that

4⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = ⟨𝑈𝑛

𝑇
( 𝑓 + 𝑔), 𝑓 + 𝑔⟩ + 𝑖⟨𝑈𝑛

𝑇
( 𝑓 + 𝑖𝑔), 𝑓 + 𝑖𝑔⟩

− ⟨𝑈𝑛
𝑇
( 𝑓 − 𝑔), 𝑓 − 𝑔⟩ − 𝑖⟨𝑈𝑛

𝑇
( 𝑓 − 𝑖𝑔), 𝑓 − 𝑖𝑔⟩

and similarly

4⟨𝑓 , 1⟩⟨1, 𝑔⟩ = ⟨𝑓 + 𝑔, 1⟩⟨1, 𝑓 + 𝑔⟩ + 𝑖⟨𝑓 + 𝑖𝑔, 1⟩⟨1, 𝑓 + 𝑖𝑔⟩
− ⟨𝑓 − 𝑔, 1⟩⟨1, 𝑓 − 𝑔⟩ − 𝑖⟨𝑓 − 𝑖𝑔, 1⟩⟨1, 𝑓 − 𝑖𝑔⟩

for all 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), where we denote by 1 the function 1𝑋 . Using these equali-
ties, one shows directly that

lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ − ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑔⟩| = 0

for all 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), which implies that (𝑋,A, 𝜇, 𝑇) is weak mixing by Theorem
4.11. □

4.4 Mixing systems

In this subsection, we provide a stronger version of weak mixing, namely strong
mixing, or mixing systems.
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Definition 4.14. A measure-preserving system (𝑋,A, 𝜇, 𝑇) is mixing if

lim
𝑛→∞

𝜇(𝑇−𝑛𝐴 ∩ 𝐵) = 𝜇(𝐴)𝜇(𝐵)

for all 𝐴, 𝐵 ∈ A.

From this definition, it is clear that mixing systems are weak mixing, in particular
ergodic.

As for weak-mixing systems, let us reformulate this notion in several manners.

Proposition 4.15. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
The following are equivalent.

(i) The system (𝑋,A, 𝜇, 𝑇) is mixing.

(ii) For any 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), we have

lim
𝑛→∞

⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑔⟩.

(iii) For any 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) with
∫
𝑋

𝑓 d𝜇 = 0, the sequence (𝑈𝑛
𝑇
𝑓 )𝑛≥0 con-

verges weakly to 0.

Proof. (i) =⇒ (ii) follows from the fact that finite linear combinations of indicator func-
tions are dense in 𝐿2(𝑋,A, 𝜇). Also (ii) =⇒ (i) and (ii) =⇒ (iii) are immediate.

(iii) =⇒ (ii) : Fix 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇). We set 𝑓 ··= 𝑓 −
∫
𝑋

𝑓 d𝜇, and applying (iii) with
this new function, which integrates to 0, yields

lim
𝑛→∞

⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = ⟨0, 𝑔⟩ = 0

and on the other hand, using linearity of the inner product, we have

⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = ⟨𝑈𝑛

𝑇
𝑓 − ⟨𝑓 , 1𝑋 ⟩, 𝑔⟩ = ⟨𝑈𝑛

𝑇
𝑓 , 𝑔⟩ − ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑔⟩

and this implies (ii). □

Here are some examples of (non-)mixing systems.

Example 4.16. (i) Consider a rotation on 2 points, i.e. 𝑋 = {0, 1}, A = P(𝑋), and
𝜇({0}) = 𝜇({1}) = 1

2 , 𝑇 (0) = 1, 𝑇 (1) = 0. Then 𝑇2𝑘 = Id𝑋 , and 𝑇2𝑘+1 = 𝑇 for all 𝑘 ≥ 0.
For 𝐴 = 𝐵 = {0}, we have then

𝜇(𝐴 ∩ 𝑇−2𝑘𝐴) = 𝜇(𝐴) = 1
2
, 𝜇(𝐴 ∩ 𝑇−(2𝑘+1)𝐴) = 𝜇({0} ∩ {1}) = 0

43



Ergodic theory 4.4 Mixing systems

so the limit condition does not hold, and the system is not mixing.
Alternatively, as already seen, the product system 𝑋 × 𝑋 is not ergodic, so 𝑋 is

not weak mixing, and therefore not mixing either. This generalizes to rotations on an
arbitrary number 𝑚 ≥ 2 of points.
(ii) The torus rotation 𝑅𝛼 : 𝕋 −→ 𝕋 is not mixing, and this can be seen in several ways.
First, if 𝛼 ∈ ℚ, it is even not ergodic. Suppose then 𝛼 ∈ ℝ \ ℚ. Then in fact 𝑅𝛼 is not
weak mixing, because for instance 𝑅𝛼 × 𝑅𝛼 is not ergodic (Example 2.4), or because it
has a lot of non-constant eigenfunctions, namely all 𝑥 ↦−→ e2𝜋𝑖𝑛𝑥, 𝑛 ∈ ℤ.
(iii) A Bernoulli shift is mixing. Using notations of Example 1.5, fix two cylinder sets

𝐴 ··= {(𝑥𝑛)𝑛≥0 ∈ 𝑋 | 𝑥0 = 𝑎0, . . . , 𝑥𝑚 = 𝑎𝑚}, 𝐵 ··= {(𝑥𝑛)𝑛≥0 ∈ 𝑋 | 𝑥0 = 𝑏0, . . . , 𝑥𝑘 = 𝑏𝑘}

where 𝑎0, . . . , 𝑎𝑚, 𝑏0, . . . , 𝑏𝑘 ∈ {0, 1}. From the definition of the left shift 𝑇 : 𝑋 −→ 𝑋 ,
we get that

𝑇− 𝑗𝐴 =

𝑗−1∏
𝑖=0

{0, 1} × {𝑎0} × · · · × {𝑎𝑚} ×
∏

𝑖≥ 𝑗+𝑚+1
{0, 1}

for all 𝑗 ≥ 0. Hence, for 𝑗 large enough, we have

𝑇− 𝑗𝐴 ∩ 𝐵 = {𝑏0} × · · · × {𝑏𝑘} × · · · × {𝑎0} × · · · × {𝑎𝑚} ×
∏

{0, 1}

and it follows that 𝜇(𝑇− 𝑗𝐴 ∩ 𝐵) = 𝜇(𝐴)𝜇(𝐵) for 𝑗 large enough. We therefore have
the limit condition satisfied for cylinder sets, and since those generate the 𝜎−algebra
on 𝑋 , the system is mixing.

We are going to formulate a more general version of Proposition 4.15.

Proposition 4.17. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
Then it is mixing if and only if for any 𝑓 , 𝑔 in a dense subset of 𝐿2(𝑋,A, 𝜇), we
have

lim
𝑛→∞

⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , 𝑔⟩.

Proof. If the system is mixing, the conclusion has already been established in 4.15,
recalling that measurable simple functions are dense in 𝐿2(𝑋,A, 𝜇).

Conversely, denote by 𝑆 the subset of 𝐿2(𝑋,A, 𝜇) for which the hypothesis holds.
By Proposition 4.15, it is enough to prove that

lim
𝑛→∞

⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩ = 0

for all 𝑓 , 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), under the assumption that ⟨𝑓 , 1𝑋 ⟩ = 0. Note that the
result is clear if 𝑓 = 0 or 𝑔 = 0. Hence we may assume 𝑓 , 𝑔 ≠ 0 and additionally
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∥ 𝑓 ∥2 = ∥𝑔∥2 = 1. Fix then 𝜀 > 0. By density of 𝑆, we find 𝑓 , �̃� ∈ 𝑆 such that
∥ 𝑓 ∥2 = ∥ �̃�∥2 = 1 and

∥ 𝑓 − 𝑓 ∥2 < 𝜀, ∥𝑔 − �̃�∥2 < 𝜀.

Thus, the triangle and the Cauchy-Schwartz inequalities, and the fact that 𝑈𝑇 pre-
serves inner products imply that

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩| = |⟨𝑈𝑇 ( 𝑓 − 𝑓 + 𝑓 ), 𝑔⟩|

≤ |⟨𝑈𝑛
𝑇
( 𝑓 − 𝑓 ), 𝑔⟩| + |⟨𝑈𝑛

𝑇
𝑓 , 𝑔⟩|

≤ ∥𝑈𝑇 ( 𝑓 − 𝑓 )∥2∥𝑔∥2 + |⟨𝑈𝑛
𝑇
𝑓 , 𝑔 − �̃�⟩| + |⟨𝑈𝑛

𝑇
𝑓 , �̃�⟩|

≤ 𝜀 + 𝜀 + |⟨𝑈𝑛
𝑇
𝑓 , �̃�⟩|

= 2𝜀 + |⟨𝑈𝑛
𝑇
𝑓 , �̃�⟩|

for all 𝑛 ≥ 1. Also observe that
���� ∫

𝑋

𝑓 d𝜇
���� = ���� ∫

𝑋

𝑓 − 𝑓 d𝜇
���� ≤ ∥ 𝑓 − 𝑓 ∥1 ≤ ∥ 𝑓 − 𝑓 ∥2 < 𝜀

and that the hypothesis implies

|⟨𝑈𝑛
𝑇
𝑓 , �̃�⟩| − |⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , �̃�⟩| ≤ |⟨𝑈𝑛

𝑇
𝑓 , �̃�⟩ − ⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , �̃�⟩| < 𝜀

if 𝑛 is large enough. Hence one gets

|⟨𝑈𝑛
𝑇
𝑓 , �̃�⟩| < 𝜀 + |⟨𝑓 , 1𝑋 ⟩⟨1𝑋 , �̃�⟩| < 2𝜀

if 𝑛 is large enough. With the previous computation, we finally have |⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩| < 4𝜀

for 𝑛 sufficiently large. Hence ⟨𝑈𝑇 𝑓 , 𝑔⟩ converges to 0, and we are done. □

This result allows us to give another important example of mixing systems.

Proposition 4.18. Let 𝑋 be a compact abelian group, B(𝑋) its Borel 𝜎−algebra,
𝑚𝑋 the Haar measure, and 𝑇 : 𝑋 −→ 𝑋 a continuous ergodic automorphism.
Then (𝑋,B(𝑋), 𝑚𝑋 , 𝑇) is mixing.

Proof. First, recall from Lemma 1.4 that (𝑋,B(𝑋), 𝑚𝑋 , 𝑇) is a measure-preserving
system. To prove the claim, we will prove that

lim
𝑛→∞

⟨𝑈𝑛
𝑇
𝜒,𝜓⟩ = ⟨𝜒, 1𝑋 ⟩⟨1𝑋 ,𝜓⟩

for all 𝜒,𝜓 ∈ �̂� the character group of 𝑋 , which is a dense subset of 𝐿2(𝑋). Fix then
such 𝜒,𝜓 ∈ �̂� . Note that if 𝜒 ≡ 1 is the trivial character, the result holds clearly.
We may assume then that 𝜒 ≠ 1. Then, by the orthogonality of characters, we have
⟨𝜒, 1⟩ = 0, so we are left to prove that

lim
𝑛→∞

⟨𝑈𝑛
𝑇
𝜒,𝜓⟩ = 0.
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Observe that there is at most one 𝑘 ∈ ℕ such that𝑈𝑘
𝑇
𝜒 = 𝜓. Indeed, if there are 𝑝 > 𝑞

such that𝑈𝑝

𝑇
𝜒 = 𝜓 = 𝑈

𝑞

𝑇
𝜒, then 𝜒 ◦𝑇 𝑝 = 𝜒 ◦𝑇𝑞, so 𝜒 ◦𝑇 𝑝−𝑞 = 𝜒 (the map 𝜒 ↦−→ 𝜒 ◦𝑇

is injective since 𝑇 is surjective). By Proposition 2.5, which we may apply since 𝑇 is
ergodic, it implies that 𝜒 is the trivial character, which is excluded. Henceforth, the
orthogonality of characters implies that

⟨𝑈𝑛
𝑇
𝜒,𝜓⟩ = 0

if 𝑛 is large enough, finishing the proof. □

To close this subsection, let us mention also a notion of mixing of order 𝑘.

Definition 4.19. A measure-preserving system (𝑋,A, 𝜇, 𝑇) is mixing of order
𝑘 ≥ 2 if for every 𝐴1, . . . , 𝐴𝑘 ∈ A and every 𝑎1, . . . , 𝑎𝑘 : ℕ −→ ℕ with lim

𝑛→∞
𝑎𝑖(𝑛)−

𝑎 𝑗 (𝑛) = ∞ for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, one has

lim
𝑛→∞

𝜇(𝑇−𝑎1 (𝑛)𝐴1 ∩ · · · ∩ 𝑇−𝑎𝑘 (𝑛)𝐴𝑘) = 𝜇(𝐴1) . . . 𝜇(𝐴𝑘).

Note that mixing of order 𝑘 = 2 is the same as mixing. It is clear that being mixing
of order 𝑘 implies being mixing of order 𝑘 − 1. It is a major open problem in ergodic
theory to know whether the converse holds, even for 𝑘 = 3.
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5. The Jacobs-de Leeuw-Glicksberg decomposition

We are now going to describe one of the most profound phenomenon in ergodic the-
ory, a dichotomy between eigenfunctions and weak mixing structure. As seen above,
a Kronecker system is spanned entirely by its eigenfunctions, whereas a weak mixing
system has no non-constant eigenfunctions. A typical dynamical system is generally
a mixture of these two extreme, but it is always possible to separate a structured com-
ponent, closed to a Kronecker system, and thus predictable, and on the other hand a
mixing, a chaotic component. This result is known as the Jacobs-de Leeuw-Glicksberg
decomposition.

5.1 The spectral theorem

The first tool we will need is from functional analysis, and is a version of the spectral
theorem for unitary operators.

Theorem 5.1. Let𝑈 : H −→ H be a unitary operator on a Hilbert space.
For every 𝑓 ∈ H , there exists a unique finite Borel measure 𝜇𝑓 on the torus 𝕋
such that

⟨𝑈𝑛 𝑓 , 𝑓 ⟩ =
∫
𝕋

e2𝜋𝑖𝑛𝑥 d𝜇𝑓 (𝑥).

In this context, the measure 𝜇𝑓 is called the spectral measure of 𝑓 .

Example 5.2. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system. Suppose 𝑓 ∈ 𝐿2(𝑋)
is an eigenfunction with eigenvalue e2𝜋𝑖𝛼. Then one has

⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩ = e2𝜋𝑖𝑛𝛼∥ 𝑓 ∥2

2 =

∫
𝕋

e2𝜋𝑖𝑛𝑥 d(∥ 𝑓 ∥2
2𝛿𝛼) (𝑥)

and by uniqueness it follows that 𝜇𝑓 = ∥ 𝑓 ∥2
2𝛿𝛼.

5.2 Weak mixing functions

Definition 5.3. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
A function 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) is called weak mixing if for all 𝑔 ∈ 𝐿2(𝑋,A, 𝜇), we
have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩| = 0.
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Note that a weak mixing function automatically satisfies
∫
𝑋

𝑓 d𝜇 = 0. Moreover,
in view of Theorem 4.11, a system is weak mixing if and only if every function with
zero integral is a weak mixing function.

The next proposition can be seen as an analog of Proposition 4.13 for weak mixing
functions.

Lemma 5.4. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system and let 𝑓 ∈
𝐿2(𝑋,A, 𝜇). If we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩| = 0

then 𝑓 is a weak mixing function.

Proof. Fix 𝑔 ∈ 𝐿2(𝑋,A, 𝜇). Consider the product space (𝑋 × 𝑋,A ⊗A, 𝜇 ⊗ 𝜇, 𝑇 ×𝑇),
and denote 𝐹 = 𝑓 ⊗ 𝑓 , 𝐺 = 𝑔 ⊗ 𝑔. By using twice the Mean Ergodic Theorem with 𝐹,
we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩|2 = lim

𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

⟨𝑈𝑛
𝑇×𝑇𝐹,𝐺⟩

= ⟨𝐹inv, 𝐺⟩
≤ ∥𝐹inv∥2∥𝐺∥2

= ∥𝐺∥2⟨𝐹inv, 𝐹inv⟩
1
2

= ∥𝐺∥2⟨𝐹inv, 𝐹⟩
1
2

= ∥𝐺∥2

(
lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

⟨𝑈𝑛
𝑇×𝑇𝐹, 𝐹⟩

) 1
2

= ∥𝐺∥2

(
lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩|2

) 1
2

= 0

hence lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩| = 0, and 𝑓 is weak mixing. □

Here is an example that illustrates the use of this lemma.
Example 5.5. Consider the space 𝑋 = 𝕋 2 with the product 𝜎−algebra, the product of
two Haar measures, and the transformation 𝑇 : 𝑋 −→ 𝑋 given by

𝑇 (𝑥, 𝑦) = (𝑥 +𝛼, 𝑥 + 𝑦)
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for all (𝑥, 𝑦) ∈ 𝑋 . Let 𝑓 , 𝑔 : 𝑋 −→ ℂ given by 𝑓 (𝑥, 𝑦) = e2𝜋𝑖𝑥 and 𝑔(𝑥, 𝑦) = e2𝜋𝑖𝑦. Then
we compute that

𝑈𝑇 𝑓 (𝑥, 𝑦) = 𝑓 (𝑇 (𝑥, 𝑦)) = e2𝜋𝑖(𝑥+𝛼) = e2𝜋𝑖𝛼e2𝜋𝑖𝑥 = e2𝜋𝑖𝛼 𝑓 (𝑥, 𝑦)

so 𝑓 is an eigenfunction with eigenvalue e2𝜋𝑖𝛼. On the other hand, by induction we get
𝑈𝑛
𝑇
𝑔 = (e2𝜋𝑖𝛼)

𝑛(𝑛−1)
2 𝑓 𝑛𝑔 for all 𝑛 ≥ 0, and this yields to

|⟨𝑈𝑛
𝑇
𝑔, 𝑔⟩| =

���� ∫
𝑋

(e2𝜋𝑖𝛼)
𝑛(𝑛−1)

2 𝑓 𝑛𝑔𝑔 d𝜇
����

=

���� ∫
𝑋

e2𝜋𝑖𝑛𝑥 d𝜇
����

=

���� ∫ 1

0
e2𝜋𝑖𝑛𝑥 d𝑥

����
= 0

and thus 𝑔 is a weak mixing function.

Our goal is now to characterize weak mixing functions in terms of their spectral
measure. We will make use of the following result, known as the Wiener’s lemma.

Lemma 5.6. Let 𝜇 be a finite Borel measure on 𝕋 .
Then one has

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

���� ∫
𝕋

e2𝜋𝑖𝑛𝑥 d𝜇(𝑥)
����2 =

∑︁
𝑥∈𝕋

|𝜇({𝑥}) |2.

Proof. Let 𝜇′ be the pushforward of 𝜇 under the map 𝑥 ↦−→ −𝑥, i.e. 𝜇′(𝐵) = 𝜇(−𝐵) for
all Borel sets 𝐵. Let also 𝜈 be the convolution of 𝜇 and 𝜇′, i.e.

𝜈(𝐵) = 𝜇 ∗ 𝜇′(𝐵) =
∫ ∫

1𝐵(𝑥 + 𝑦) d𝜇(𝑥)d𝜇′(𝑦)

for every Borel set 𝐵. Observe that lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

e2𝜋𝑖𝑛𝑥 =

{
1 if 𝑥 = 0
0 otherwise

, so the domi-

nated convergence theorem implies

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

∫
𝕋

e2𝜋𝑖𝑛𝑥 d𝜈(𝑥) =
∫
𝕋

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

e2𝜋𝑖𝑛𝑥 d𝜈(𝑥) = 𝜈({0}).

Now, on one hand, we have∫
𝕋

e2𝜋𝑖𝑛𝑥 d𝜈(𝑥) =
∫ ∫

e2𝜋𝑖𝑛(𝑥+𝑦) d𝜇(𝑥)d𝜇′(𝑦)
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=

∫ ∫
e2𝜋𝑖𝑛𝑥e2𝜋𝑖𝑛𝑦 d𝜇(𝑥)d𝜇′(𝑦)

=

∫ ∫
e2𝜋𝑖𝑛𝑥e−2𝜋𝑖𝑛𝑦 d𝜇(𝑥)d𝜇(𝑦)

=

���� ∫
𝕋

e2𝜋𝑖𝑛𝑥 d𝜇(𝑥)
����2

while on the other hand, it holds that

𝜈({0}) =
∫ ∫

1{0} (𝑥 + 𝑦) d𝜇(𝑥)d𝜇′(𝑦)

=

∫
𝜇({−𝑦}) d𝜇′(𝑦)

=

∫
𝜇({𝑦}) d𝜇(𝑦)

=
∑︁
𝑦∈𝕋

|𝜇({𝑦}) |2

and these two computations, together with previous limit, give the desired claim. □

We can now easily deduce the following. Recall before that a Borel measure 𝜇 is
called continuous if it is non-atomic, i.e. it gives zero mass to singletons.

Proposition 5.7. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
A function 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) is weak mixing if and only if 𝜇𝑓 is continuous.

Proof. By the previous results, we have

𝑓 is weak mixing ⇐⇒ lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩| = 0

⇐⇒ lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

|⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩|2 = 0

⇐⇒ lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

���� ∫ e2𝜋𝑖𝑛𝑥 d𝜇𝑓 (𝑥)
����2 = 0

⇐⇒
∑︁
𝑥∈𝕋

|𝜇𝑓 ({𝑥}) |2 = 0

⇐⇒ ∀𝑥 ∈ 𝕋 , 𝜇𝑓 ({𝑥}) = 0
where the first equivalence is Lemma 5.4, the second is a general fact from analysis,
the third is the spectral theorem, and the fourth follows from Lemma 5.6. Thus we are
done. □
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5.3 The splitting Hc ⊕ Hwm

For a measure-preserving system (𝑋,A, 𝜇, 𝑇), let Hc denote the closure of the sub-
space generated by the eigenfunctions, and denote Hwm the subspace of weak mixing
functions.

Theorem 5.8. We have Hc ⊥ Hwm and 𝐿2(𝑋,A, 𝜇) = Hc ⊕ Hwm.

Proof. To start, fix 𝑓 ∈ Hwm and 𝑔 an eigenfunction. Say that𝑈𝑇 𝑔 = 𝜆𝑔, 𝜆 ∈ 𝕊1. Then
we compute

|⟨𝑓 , 𝑔⟩| = 1
𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 ,𝑈𝑛

𝑇
𝑔⟩| = 1

𝑁

𝑁∑︁
𝑛=1

|𝜆𝑛 | |⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩| = 1

𝑁

𝑁∑︁
𝑛=1

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩|

and since this last quantity tends to 0 as 𝑁 → ∞, we must have |⟨𝑓 , 𝑔⟩| = 0. Hence
⟨𝑓 , 𝑔⟩ = 0, and by linearity 𝑓 is orthogonal to the subspace generated by eigenfunc-
tions. Since the latter is dense in Hc, we deduce Hwm ⊥ Hc. To prove the second claim,
it suffices to prove that Hwm = H⊥

c , and since Hwm ⊂ H⊥
c , it only remains to see the

other inclusion. We will in fact prove that 𝑓 ∉ Hwm =⇒ 𝑓 ∉ H⊥
c . Let then 𝑓 ∉ Hwm.

By Proposition 5.7, 𝜇𝑓 is not continuous, so there exists 𝛼 ∈ 𝕋 such that 𝜇𝑓 ({𝛼}) > 0.
Consider now the measure-preserving system 𝑌 = 𝕋 , B is the Borel 𝜎−algebra, 𝜈 is
the Haar measure, and 𝑆(𝑦) = 𝑦 + 𝛼. Denote furthermore 𝑔(𝑦) = e2𝜋𝑖𝑦, and observe
that𝑈𝑆𝑔 = e2𝜋𝑖𝛼𝑔. On the product system (𝑋 ×𝑌,A ⊗ B, 𝜇 ⊗ 𝜈, 𝑇 × 𝑆), let 𝐹 = 𝑓 ⊗ 𝑔.
By the Mean Ergodic Theorem, we have

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇×𝑆𝐹 = 𝐹inv

in 𝐿2−norm. Therefore, this convergence holds also weakly, and we can compute that

⟨𝐹inv, 𝐹⟩ = lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

⟨𝑈𝑛
𝑇×𝑆𝐹, 𝐹⟩

= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

⟨(𝑈𝑛
𝑇
𝑓 ) ⊗ (𝑈𝑛

𝑆
𝑔), 𝑓 ⊗ 𝑔⟩

= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩ ⟨𝑈𝑛

𝑆
𝑔, 𝑔⟩︸    ︷︷    ︸

=e−2𝜋𝑖𝑛𝛼

= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

e−2𝜋𝑖𝑛𝛼⟨𝑈𝑛
𝑇
𝑓 , 𝑓 ⟩
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= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

e−2𝜋𝑖𝑛𝛼
∫

e2𝜋𝑖𝑛𝑥 d𝜇𝑓 (𝑥)

=

∫
lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

e2𝜋𝑖𝑛(𝑥−𝛼) d𝜇𝑓 (𝑥)

= 𝜇𝑓 ({𝛼}) > 0

using the spectral theorem (Theorem 5.1) and the dominated convergence theorem.
This shows that 𝐹inv ≠ 0. Now observe that

𝑈Id×𝑆−1𝐹 = (𝑈Id 𝑓 ) ⊗ (𝑈𝑆−1 𝑔) = 𝑓 ⊗ e2𝜋𝑖𝛼𝑔 = e2𝜋𝑖𝛼𝐹

and thus we also have

𝑈Id×𝑆−1𝐹inv = lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈Id×𝑆−1𝑈𝑛
𝑇×𝑆𝐹

= lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇×𝑆𝑈Id×𝑆−1𝐹

= e2𝜋𝑖𝛼 lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑈𝑛
𝑇×𝑆𝐹

= e2𝜋𝑖𝛼𝐹inv.

It then follows that

𝑈𝑇×Id𝐹inv = 𝑈Id×𝑆−1𝑈𝑇×𝑆𝐹inv = 𝑈Id×𝑆−1𝐹inv = e2𝜋𝑖𝛼𝐹inv

which means exactly that 𝐹inv(𝑇𝑥, 𝑦) = e2𝜋𝑖𝛼𝐹inv(𝑥, 𝑦). Let then ℎ𝑦(𝑥) = 𝐹inv(𝑥, 𝑦),
which is therefore an eigenfunction for 𝑈𝑇 with eigenvalue e2𝜋𝑖𝛼. Lastly, by Fubini’s
theorem one can write

0 < ⟨𝐹inv, 𝐹⟩ =
∫
𝑋×𝑌

𝐹inv(𝑥, 𝑦) 𝑓 (𝑥)𝑔(𝑦) d(𝜇 ⊗ 𝜈) (𝑥, 𝑦)

=

∫
𝑌

𝑔(𝑦)
( ∫

𝑋

ℎ𝑦(𝑥) 𝑓 (𝑥) d𝜇(𝑥)
)

d𝜈(𝑦)

=

∫
𝑌

𝑔(𝑦)⟨ℎ𝑦, 𝑓 ⟩ d𝜈(𝑦)

so there must exist 𝑦 ∈ 𝑌 such that ℎ𝑦 ≠ 0 and ⟨ℎ𝑦, 𝑓 ⟩ > 0. Thus 𝑓 correlates with an
eigenfunction of𝑈𝑇 , which means 𝑓 ∉ H⊥

c , and finishes the proof. □

As promised, we now show having all eigenfunctions almost everywhere constant
characterize weak mixing systems.
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Theorem 5.9. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
It is weak mixing if and only all eigenfunctions are almost everywhere constant.

Proof. The direct implication has been seen in Corollary 4.12.
Conversely, suppose all eigenfunctions are constant almost everywhere. To show

the system is weak mixing, it suffices to prove that every 𝑓 ∈ 𝐿2(𝑋,A, 𝜇) with integral
⟨𝑓 , 1𝑋 ⟩ = 0 is weak mixing. By Theorem 5.8, we write 𝑓 = 𝑓c + 𝑓wm with 𝑓𝑐 ∈ Hc and
𝑓wm ∈ Hwm. By hypothesis, 𝑓c is almost everywhere constant, and we denote this
constant by 𝐾 . But then

0 =

∫
𝑋

𝑓 d𝜇 =

∫
𝑋

𝑓c d𝜇 +
∫
𝑋

𝑓wm d𝜇 = 𝐾

using the fact that a weak mixing function has integral equals to 0. Thus 𝑓 = 𝑓wm is
weak mixing, as was to be shown. □
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6. Modeling ℕ through dynamical systems

In this part, we begin our preparation to the next section, and explain how integers
relate deeply to ergodic theory. This relation is known as the Furstenberg’s correspon-
dence principle, and can therefore be used to prove results in number theory via ergodic
theory.

6.1 The Bogolyubov-Krylov Theorem

Definition 6.1. Let 𝑋 be a compact metric space, 𝜇 a Borel probability measure,
and 𝑇 : 𝑋 −→ 𝑋 be continuous. A point 𝑥 ∈ 𝑋 is called generic for 𝜇 if we have

lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑓 (𝑇𝑛𝑥) =
∫
𝑋

𝑓 d𝜇

for all 𝑓 ∈ 𝐶(𝑋). More generally, if (𝐼𝑘)𝑘∈ℕ is a sequence of intervals whose
length tends to infinity, then 𝑥 ∈ 𝑋 is generic for 𝜇 along (𝐼𝑘)𝑘∈ℕ if we have

lim
𝑘→∞

1
|𝐼𝑘 |

∑︁
𝑛∈𝐼𝑘

𝑓 (𝑇𝑛𝑥) =
∫
𝑋

𝑓 d𝜇

for all 𝑓 ∈ 𝐶(𝑋).

Remark 6.2. If 𝑥 is generic for 𝜇, then for all 𝑓 ∈ 𝐶(𝑋), we have∫
𝑋

𝑓 d(𝑇∗𝜇) =
∫
𝑋

𝑓 ◦ 𝑇 d𝜇 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑓 ◦ 𝑇 (𝑇𝑛𝑥) = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑓 (𝑇𝑛𝑥) =
∫
𝑋

𝑓 d𝜇

so 𝜇 and 𝑇∗𝜇 integrate continuous functions the same way, and this is enough to get
that 𝑇∗𝜇 = 𝜇. The same argument applies for generic points along a sequence of
intervals. Note that the second equality above crucially relies on the fact that 𝑇 is
continuous.

The existence of generic points is in fact always guaranteed in a compact space.

Proposition 6.3. Let 𝑋 be a compact metric space, 𝑇 : 𝑋 −→ 𝑋 continuous.
For any 𝑥 ∈ 𝑋 and any sequence (𝐼𝑘)𝑘∈ℕ, there is a subsequence (𝐼′

𝑘
)𝑘∈ℕ and a

Borel probability measure 𝜇 such that 𝑥 is generic for 𝜇 along (𝐼′
𝑘
)𝑘∈ℕ.
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Proof. Let M(𝑋) denote the set of Borel probability measures on 𝑋 . For 𝑘 ∈ ℕ, let
𝜇𝑘 ··=

1
|𝐼𝑘 |

∑︁
𝑛∈𝐼𝑘

𝛿𝑇𝑛𝑥 ∈ M(𝑋). Since M(𝑋) is compact, there exists 𝜇 ∈ M(𝑋) and a

subsequence (𝜇𝑘 𝑗 ) 𝑗∈ℕ of (𝜇𝑘)𝑘∈ℕ converging to 𝜇. Set then 𝐼′
𝑗
··= 𝐼𝑘 𝑗 for 𝑗 ∈ ℕ. □

This yields to the Bogolyobov-Krylov theorem.

Theorem 6.4. Let 𝑋 be a compact metric space.
For any continuous map 𝑇 : 𝑋 −→ 𝑋 , there exists a Borel probability measure
𝜇 preserved by 𝑇.

Proof. Let 𝑥 ∈ 𝑋 be an arbitrary point. By Proposition 6.3, we can find 𝜇 a Borel
probability measure and a sequence of intervals whose length tends to infinity such
that 𝑥 is generic for 𝜇 along this sequence. Then 𝑇 must preserves 𝜇 by Remark 6.2,
which we may use since 𝑇 is continuous. □

In the sequel, we will also make use of the following proposition.

Proposition 6.5. Let 𝑋 be a compact metric space, A its Borel 𝜎−algebra, 𝜇 a
Borel probability measure, and 𝑇 : 𝑋 −→ 𝑋 a continuous measure-preserving
transformation. If (𝑋,A, 𝜇, 𝑇) is ergodic then every sequence of intervals
(𝐼𝑘)𝑘∈ℕ has a subsequence (𝐼′

𝑘
)𝑘∈ℕ such that 𝜇−almost every point 𝑥 ∈ 𝑋 is

generic for 𝜇 along (𝐼′
𝑘
)𝑘∈ℕ.

6.2 Furstenberg’s correspondence principle

Recall that the upper density of a set 𝐴 ⊂ ℕ is defined as

𝑑(𝐴) ··= lim sup
𝑁→∞

|𝐴 ∩ {1, . . . , 𝑁}|
𝑁

.

For instance, 𝑑(2ℕ) = 𝑑(2ℕ + 1) = 1
2 , while any finite set has upper density 0. The

set of perfect squares has upper density 6
𝜋2 , while the subset of prime numbers has

density 0.
Here the bridge between number and ergodic theory. It is called the Furstenberg’s

correspondence principle.
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Theorem 6.6. For any 𝐴 ⊂ ℕ, there exists a compact metric space 𝑋 , a con-
tinuous map 𝑇 : 𝑋 −→ 𝑋 , a Borel probability measure preserved by 𝑇, a point
𝑥 ∈ 𝑋 generic for 𝜇 along a sequence (𝐼𝑘)𝑘∈ℕ and a clopen set 𝐸 ⊂ 𝑋 so that
𝜇(𝐸) = 𝑑(𝐴) and 𝐴 = {𝑛 ∈ ℕ : 𝑇𝑛𝑥 ∈ 𝐸}.

Proof. Suppose 𝐴 ⊂ ℕ is given. Take 𝑋 = {0, 1}ℕ∪{0}, 𝑇 : 𝑋 −→ 𝑋 the left shift, and
𝑥 = 1𝐴. Let (𝑁𝑘)𝑘∈ℕ be such that

𝑑(𝐴) = lim
𝑘→∞

|𝐴 ∩ {1, . . . , 𝑁𝑘}|
𝑁𝑘

,

which is possible since the limsup of a sequence of real numbers is always an accumu-
lation point of this sequence. Choose 𝐼𝑘 ··= {1, . . . , 𝑁𝑘}. Finally, let

𝐸 ··= {𝑤 ∈ 𝑋 : 𝑤0 = 1}.

We now show all claims of the theorem holds. First, note that {0, 1} is compact metric,
so that 𝑋 is compact metric for the product topology, by Tychonoff’s theorem. Secondly,
𝑇 is continuous. We can now apply Proposition 6.3 and we find a subsequence (𝐼′

𝑘
)𝑘∈ℕ

and a Borel probability measure 𝜇 such that 𝑥 is generic for 𝜇 along (𝐼′
𝑘
)𝑘∈ℕ. Then, by

Remark 6.2, 𝜇 is preserved by 𝑇. Next, note that 𝐸 is open in 𝑋 , since we can write

𝐸 = {0} ×
∏
𝑛≥1

{0, 1}

and {0} is open in {0, 1}. Similarly, 𝑋 \ 𝐸 is open, so 𝐸 is also closed in 𝑋 . We have
also that

1𝐸 (𝑇𝑛𝑥) = 1𝐸 (𝑇𝑛1𝐴) = 1𝐸 (1𝐴−𝑛) = 1𝐴−𝑛(0) = 1𝐴(𝑛)
proving that 𝐴 = {𝑛 ∈ ℕ : 𝑇𝑛𝑥 ∈ 𝐴}. To conclude, we compute that

𝜇(𝐸) =
∫
𝑋

1𝐸 d𝜇 = lim
𝑘→∞

1
|𝐼′
𝑘
|
∑︁
𝑛∈𝐼′

𝑘

1𝐸 (𝑇𝑛𝑥) = lim
𝑘→∞

1
|𝐼′
𝑘
|
∑︁
𝑛∈𝐼′

𝑘

1𝐴(𝑛) = lim
𝑘→∞

|𝐴 ∩ 𝐼′
𝑘
|

|𝐼′
𝑘
| = 𝑑(𝐴)

where the second equality follows from the fact that 𝑥 is generic for 𝜇 along (𝐼′
𝑘
)𝑘∈ℕ, and

the fact that 1𝐸 is indeed continuous since 𝐸 is clopen. This concludes the proof. □

We can in fact make two additional assumptions on the space 𝑋 used to model the
subset 𝐴 ⊂ ℕ. These requires the following terminology.

Definition 6.7. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, with 𝑋 com-
pact metric and 𝑇 : 𝑋 −→ 𝑋 continuous.
It has continuous eigenfunctions if every eigenfunction has a continuous repre-
sentative in its 𝐿2(𝑋,A, 𝜇) equivalence class.
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Ergodic theory 6.2 Furstenberg’s correspondence principle

We will take for granted the following fact.

Lemma 6.8. Without restrictions, we can assume that the system stemming
from Furstenberg’s correspondence principle is ergodic and has continuous
eigenfunctions.
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7. Applications to number theory

In this section, we show how Furstenberg’s correspondence principle can be applied
to solve problems from number theory. The main part of this chapter is devoted to the
proof of the so called Erdös sumset conjecture.

7.1 First applications

The first lemma we will need for this section is the following. We place ourselves
in the context of Furstenberg’s correspondence principle, i.e. Theorem 6.6.

Lemma 7.1. Let 𝐴 ⊂ ℕ.
For any 𝑛1, . . . , 𝑛𝑘 ∈ ℕ, it holds that

𝜇

( 𝑘⋂
𝑖=1
𝑇−𝑛𝑖𝐸

)
≤ 𝑑

( 𝑘⋂
𝑖=1

(𝐴 − 𝑛𝑖)
)
.

Proof. From the proof of Theorem 6.6, we have 𝑋 = {0, 1}ℕ∪{0}, 𝑇 : 𝑋 −→ 𝑋 the left
shift, 𝑥 = 1𝐴, 𝐸 = {𝑤 ∈ 𝑋 | 𝑤0 = 1}, so that 𝐴 = {𝑛 ∈ ℕ | 𝑇𝑛𝑥 ∈ 𝐸}. We also find a
Borel probability measure 𝜇 such that 𝑥 is generic for 𝜇 along a sequence (𝐼𝑘)𝑘∈ℕ, and
we have proved that

𝜇(𝐸) = lim
𝑘→∞

1
|𝐼𝑘 |

∑︁
𝑛∈𝐼𝑘

1𝐸 (𝑇𝑛𝑥) = 𝑑(𝐴).

The map 𝑇 being continuous, and 𝐸 ⊂ 𝑋 being clopen, also 𝑇−𝑛1𝐸, . . . , 𝑇−𝑛𝑘𝐸 ⊂ 𝑋

are clopen, so the intersection
𝑘⋂
𝑖=1
𝑇−𝑛𝑖𝐸 is clopen, hence its indicator function is con-

tinuous, and since 𝑥 is generic for 𝜇 along (𝐼𝑘)𝑘∈ℕ we get

𝜇

( 𝑘⋂
𝑖=1
𝑇−𝑛𝑖𝐸

)
=

∫
𝑋

1⋂𝑘
𝑖=1 𝑇

−𝑛𝑖𝐸 d𝜇 = lim
𝑘→∞

1
|𝐼𝑘 |

∑︁
𝑛∈𝐼𝑘

1⋂𝑘
𝑖=1 𝑇

−𝑛𝑖𝐸 (𝑇
𝑛𝑥).

Now note that 𝑇𝑛𝑥 ∈
𝑘⋂
𝑖=1
𝑇−𝑛𝑖𝐸 if and only if 𝑇𝑛+𝑛𝑖𝑥 ∈ 𝐸 for all 𝑖 = 1, . . . , 𝑘, which is

equivalent to 𝑛 + 𝑛𝑖 ∈ 𝐴 for all 𝑖 = 1, . . . , 𝑘, or also 𝑛 ∈ 𝐴 − 𝑛𝑖 for all 𝑖 = 1, . . . , 𝑘, i.e.
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Ergodic theory 7.1 First applications

𝑛 ∈
𝑘⋂
𝑖=1

(𝐴 − 𝑛𝑖). Thus

𝜇

( 𝑘⋂
𝑖=1
𝑇−𝑛𝑖𝐸

)
= lim
𝑘→∞

1
|𝐼𝑘 |

∑︁
𝑛∈𝐼𝑘

1⋂𝑘
𝑖=1 𝑇

−𝑛𝑖𝐸 (𝑇
𝑛𝑥)

= lim
𝑘→∞

|⋂𝑘
𝑖=1(𝐴 − 𝑛𝑖) ∩ {1, . . . , 𝑁𝑘}|

|{1, . . . , 𝑁𝑘}|

≤ lim sup
𝑁→∞

|⋂𝑘
𝑖=1(𝐴 − 𝑛𝑖) ∩ {1, . . . , 𝑁}|

|{1, . . . , 𝑁}|

= 𝑑

( 𝑘⋂
𝑖=1

(𝐴 − 𝑛𝑖)
)

and this proves the claim. □

We now give two applications of these results. Remember that a subset of ℕ con-
taining an infinite syndetic set is itself syndetic.

Proposition 7.2. Let 𝐴 ⊂ ℕ be a set of positive density.
Then 𝐴 − 𝐴 ··= {𝑎 − 𝑏 | 𝑎, 𝑏 ∈ 𝐴} is syndetic.

Proof. Let’s first apply Furstenberg’s correspondence principle, to find a compact met-
ric space 𝑋 , a continuous transformation 𝑇 : 𝑋 −→ 𝑋 , a clopen set 𝐸 ⊂ 𝑋 such that
𝐴 = {𝑛 ∈ ℕ | 𝑇𝑛𝑥 ∈ 𝐸} and 𝜇(𝐸) = 𝑑(𝐴). By a weak version of Kintchine’s theorem
(Theorem 2.12), the set

𝑅 ··= {𝑛 ∈ ℕ : 𝜇(𝐸 ∩ 𝑇−𝑛𝐸) > 0}

is syndetic. Now if 𝑆 ··= {𝑛 ∈ ℕ | 𝑑(𝐴 ∩ (𝐴 − 𝑛)) > 0}, then it follows from Lemma 7.1
that 𝑅 ⊂ 𝑆, and thus 𝑆 is also syndetic. Lastly, note that if 𝑛 ∈ 𝑆, then 𝐴∩(𝐴−𝑛) ≠ ∅,
and this implies 𝑛 ∈ 𝐴 − 𝐴. Hence 𝐴 − 𝐴 contains 𝑆 which is syndetic, so 𝐴 − 𝐴 is
syndetic. □

For the next result, we require a terminology.

Definition 7.3. A set 𝐴 ⊂ ℕ is called intersective if for any 𝐵 ⊂ ℕ of positive
density, we have 𝐴 ∩ (𝐵 − 𝐵) ≠ ∅.

The following proposition then gives us a bunch of intersective sets.
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Proposition 7.4. A set of recurrence 𝑅 ⊂ ℕ is intersective.

Proof. Let 𝑅 ⊂ ℕ be a set of recurrence, and 𝐴 ⊂ ℕ having positive density. By
Theorem 6.6, we find a measure-preserving system (𝑋,A, 𝜇, 𝑇) and a clopen set 𝐸 ⊂
𝑋 such that 𝜇(𝐸) = 𝑑(𝐴) and 𝐴 = {𝑛 ∈ ℕ : 𝑇𝑛𝑥 ∈ 𝐸}. In particular, 𝜇(𝐸) > 0 since 𝐴
has positive density, and 𝑅 being a set of recurrence now implies there is 𝑛 ∈ 𝑅 such
that

𝜇(𝐸 ∩ 𝑇−𝑛𝐸) > 0.

By Lemma 7.1, it follows that 𝑑(𝐴∩(𝐴−𝑛)) > 0, which in turn implies 𝑛 ∈ 𝐴−𝐴. Hence
𝑛 ∈ 𝑅 ∩ (𝐴 − 𝐴), which is therefore not empty, and we proved 𝑅 is intersective. □

7.2 The Szemerédi’s theorem

Szemerédi’s theorem is a qualitative result about arithmetic progressions. In order
to prove it, we admit the next result, which can be viewed as a wide generalization of
Poincaré’s recurrence theorem. This is called the Furstenberg’s multiple recurrence
theorem.

Theorem 7.5. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, and 𝐴 ∈ A
with 𝜇(𝐴) > 0. For any 𝑘 ∈ ℕ, there exists 𝑛 ∈ ℕ such that

𝜇(𝐴 ∩ 𝑇−𝑛𝐴 ∩ 𝑇−2𝑛𝐴 ∩ · · · ∩ 𝑇−𝑘𝑛𝐴) > 0.

Here is the goal of this subsection.

Theorem 7.6. Let 𝐴 ⊂ ℕ be a set of positive density.
Then 𝐴 contains arbitrary long arithmetic progressions.

Proof. By the Furstenberg’s correspondence principle, we find a measure-preserving
system (𝑋,A, 𝜇, 𝑇), a point 𝑥 ∈ 𝑋 and a clopen set 𝐸 ⊂ 𝑋 such that 𝜇(𝐸) = 𝑑(𝐴)
and 𝐴 = {𝑛 ∈ ℕ : 𝑇𝑛𝑥 ∈ 𝐸}. Now fix 𝑘 ∈ ℕ. We will prove 𝐴 contains an arithmetic
progression of length 𝑘. Since 𝜇(𝐸) = 𝑑(𝐴) > 0, Theorem 7.5 guarantees the existence
of 𝑛 ∈ ℕ such that

𝜇(𝐸 ∩ 𝑇−𝑛𝐸 ∩ · · · ∩ 𝑇−𝑘𝑛𝐸) > 0.
It then follows from Lemma 7.1 that

𝑑(𝐴 ∩ (𝐴 − 𝑛) ∩ · · · ∩ (𝐴 − 𝑘𝑛)) > 0
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and, in particular, 𝐴 ∩ (𝐴 − 𝑛) ∩ · · · ∩ (𝐴 − 𝑘𝑛) ≠ ∅. Let then 𝑚 ∈
𝑘⋂
𝑗=0

(𝐴 − 𝑗𝑛).

Equivalently, 𝑚,𝑚+𝑛, 𝑚+2𝑛, . . . , 𝑚+ 𝑘𝑛 ∈ 𝐴, which shows 𝐴 contains an arithmetic
progression of length 𝑘, as wanted. □

7.3 The Erdös sumset conjecture

Let’s now turn ourselves to the main result of this section, the Erdös sumset conjec-
ture. It claims that any set 𝐴 ⊂ ℕ of positive density contains the sum of two infinite
sets. Initially asked by Paul Erdös in the 70’s, it was proved in 2019 by Joel Moreira,
Florian Richter and Donald Robertson.

The first step towards the proof is to reformulate what it means for a set 𝐴 to
contain the sum of two infinite sets.

Lemma 7.7. Let 𝐴 ⊂ ℕ.
There exists two infinite sets 𝐵,𝐶 ⊂ ℕ such that 𝐵 + 𝐶 ⊂ 𝐴 if and only if there
exists an increasing sequence 𝑠1 < 𝑠2 < . . . of integers and 𝐿 ⊂ ℕ with

1𝐿(𝑛) = lim
𝑖→∞

1𝐴(𝑛 + 𝑠𝑖)

and such that the family (𝐿 ∩ (𝐴 − 𝑠𝑖))𝑖∈ℕ has the large intersection property,
i.e. any finite subfamily intersects in an infinite set.

Proof. To start, suppose 𝐵 + 𝐶 ⊂ 𝐴, and write 𝐵 = (𝑏𝑖)𝑖∈ℕ, 𝐶 = (𝑐 𝑗) 𝑗∈ℕ. By a diago-
nalization argument, there is a subsequence (𝑠𝑖)𝑖∈ℕ of (𝑏𝑖)𝑖∈ℕ such that lim

𝑖→∞
1𝐴(𝑛 + 𝑠𝑖)

exists for all 𝑛 ∈ ℕ. Define 𝐿 ⊂ ℕ so that

1𝐿(𝑛) = lim
𝑖→∞

1𝐴(𝑛 + 𝑠𝑖).

Observe then that 𝐶 ⊂ 𝐿, and since 𝐶 ⊂ 𝐴 − 𝑠𝑖 for all 𝑖 ∈ ℕ, it follows that 𝐶 ⊂
𝐿 ∩ (𝐴 − 𝑠𝑖) for all 𝑖 ∈ ℕ. Hence (𝐿 ∩ (𝐴 − 𝑠𝑖))𝑖∈ℕ has the large intersection property.

Conversely, we are going to construct 𝐴 and 𝐵 inductively. To start, take 𝑏1 = 𝑠1
and 𝑐1 any element in 𝐿 ∩ (𝐴 − 𝑠1) = 𝐿 ∩ (𝐴 − 𝑏1). Suppose that 𝑐1, . . . , 𝑐𝑛 ∈ 𝐿,
𝑏1, . . . , 𝑏𝑛 ∈ {𝑠1, 𝑠2, . . . } have been found, and that they satisfy 𝑐 𝑗 + 𝑏𝑖 ∈ 𝐴 for 𝑖, 𝑗 =
1, . . . 𝑛. Let 𝑐𝑛+1 be any element of

𝑛⋂
𝑖=1

(𝐿 ∩ (𝐴 − 𝑏𝑖))
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with 𝑐𝑛+1 > 𝑐𝑛. Such an element exists because the above intersection is infinite by
hypothesis. In particular, 𝑐𝑛+1 + 𝑏𝑖 ∈ 𝐴 for all 𝑖 = 1, . . . , 𝑛. Now since 𝑐1, . . . , 𝑐𝑛+1 ∈ 𝐿,
we obtain

lim
𝑖→∞

1𝐴(𝑐 𝑗 + 𝑠𝑖) = 1𝐿(𝑐 𝑗) = 1

for all 𝑗 = 1, . . . , 𝑛 + 1. This implies that 1𝐴(𝑐 𝑗 + 𝑠𝑖) becomes constant equal to 1 for
𝑖 sufficiently large, i.e. 𝑐 𝑗 + 𝑠𝑖 ∈ 𝐴 for 𝑖 large enough. We can therefore find 𝑏𝑛+1 ∈
{𝑠1, 𝑠2, . . . } so that 𝑏𝑛+1 > 𝑏𝑛 and 𝑐 𝑗 + 𝑏𝑛+1 ∈ 𝐴 for all 𝑗 = 1, . . . , 𝑛 + 1. This achieves
the inductive step, and our proof. □

Here are two remarks of importance for the proof of the main theorem.

Remark 7.8. (i) If 𝑓 = 𝑓c + 𝑓wm is the Jacobs-de Leeuw-Glicksberg decomposition of
𝑓 , and if 𝑓 ≥ 0, then 𝑓c ≥ 0. In particular the orthogonal projection onto the subspace
Hc preserves the order.

(ii) If 𝑓 is weak mixing then lim
𝑘→∞

1
|𝐼𝑘 |

∑︁
𝑛∈𝐼𝑘

|⟨𝑈𝑛
𝑇
𝑓 , 𝑔⟩| = 0 for any increasing sequence of

intervals (𝐼𝑘)𝑘∈ℕ and any 𝑔 ∈ 𝐿2(𝑋,A, 𝜇). Indeed, Wiener’s lemma still holds when
the average is taken over a sequence (𝐼𝑘)𝑘∈ℕ, so the limit equals 0 if and only if 𝜇𝑓 is
continuous, which holds since 𝑓 is weak mixing.

Theorem 7.9. Let 𝑋 be a compact metric space, A the Borel 𝜎−algebra, 𝜇 a
Borel probability measure, and 𝑇 : 𝑋 −→ 𝑋 a continuous measure-preserving
transformation. Let 𝑥 ∈ 𝑋 be generic for 𝜇 along a sequence of intervals (𝐼𝑘)𝑘∈ℕ.
Suppose that (𝑋,A, 𝜇, 𝑇) is ergodic and has continuous eigenfunctions. Then
for any clopen set 𝐸 ⊂ 𝑋 with 𝜇(𝐸) > 0, there exists 𝑦 ∈ 𝑋 , an increasing
sequence of integers 𝑠1 < 𝑠2 < . . . and a Borel probability measure 𝜆 on 𝑋 × 𝑋
such that :

(i) The sequence (𝑇 𝑠𝑖𝑥)𝑖∈ℕ converges to 𝑦 as 𝑖→ ∞.

(ii) The point (𝑥, 𝑦) is generic for 𝜆 along a subsequence of (𝐼𝑘)𝑘∈ℕ.

(iii) For any 𝑘 ∈ ℕ, 𝜆((𝑇−𝑠1𝐸 ∩ · · · ∩ 𝑇−𝑠𝑘𝐸) × 𝐸) > 0.

Proof. To come. □

From there, Erdös sumset conjecture follows straightforwardly.

Theorem 7.10. Let 𝐴 ⊂ ℕ be a set of positive density.
Then 𝐴 contains the sum of two infinite sets 𝐵,𝐶 ⊂ ℕ.
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Proof. Let 𝐴 ⊂ ℕ be such that 𝑑(𝐴) > 0. By the Furstenberg’s correspondence princi-
ple, namely Theorem 6.6, we find a compact metric space 𝑋 , a Borel probability mea-
sure 𝜇, a continuous transformation 𝑇 : 𝑋 −→ 𝑋 preserving 𝜇, a point 𝑥 ∈ 𝑋 generic
for 𝜇 along a sequence (𝐼𝑘)𝑘∈ℕ, such that 𝜇(𝐸) = 𝑑(𝐴) and 𝐴 = {𝑛 ∈ ℕ : 𝑇𝑛𝑥 ∈ 𝐸}.
Moreover, by Lemma 6.8, we can assume (𝑋,A, 𝜇, 𝑇) is ergodic and has continuous
eigenfunctions. Henceforth, we may apply Theorem 7.9, and we have a point 𝑦 ∈ 𝑋 , a
sequence 𝑠1 < 𝑠2 < . . . of integers and a Borel probability measure 𝜆 on 𝑋 × 𝑋 such
that the three points above hold. Let now 𝐿 ··= {𝑛 ∈ ℕ : 𝑇𝑛𝑦 ∈ 𝐸}. One has then

1𝐿(𝑛) = 1𝐸 (𝑇𝑛𝑦) = 1𝐸 ( lim
𝑖→∞

𝑇𝑛+𝑠𝑖𝑥) = lim
𝑖→∞

1𝐸 (𝑇𝑛+𝑠𝑖𝑥) = lim
𝑖→∞

1𝐴(𝑛 + 𝑠𝑖)

for all 𝑛 ∈ ℕ, since 𝑇 and 1𝐸 are continuous. Furthermore, note that

𝐿 ∩
𝑘⋂
𝑖=1

(𝐴 − 𝑠𝑖) = {𝑛 ∈ ℕ : 𝑇𝑛𝑦 ∈ 𝐸} ∩ {𝑛 ∈ ℕ : 𝑇𝑛+𝑠1𝑥 ∈ 𝐸, . . . , 𝑇𝑛+𝑠𝑘𝑥 ∈ 𝐸}

= {𝑛 ∈ ℕ : (𝑇 × 𝑇)𝑛(𝑥, 𝑦) ∈ (𝑇−𝑠1𝐸 ∩ · · · ∩ 𝑇−𝑠𝑘𝐸) × 𝐸}

and by combining (ii) and (iii) of Theorem 7.9, we see that the latter is infinite. Thus
the family (𝐿∩ (𝐴− 𝑠𝑖))𝑖∈ℕ has the large intersection property, and by Lemma 7.7, we
conclude that 𝐴 contains the sum 𝐵 + 𝐶 of two infinite sets. □
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8. Entropy

Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system. Knowing the position of a point
𝑥 ∈ 𝑋 and 𝑇𝑥,𝑇2𝑥, . . . , 𝑇𝑛−1𝑥, how accurate are the predictions that one can make
about the approximate position of 𝑇𝑛𝑥? The answer depends crucially on the transfor-
mation 𝑇. If the transformation is in nature deterministic, the past trajectory deter-
mines the imminent future and so informations about 𝑥, 𝑇𝑥, . . . , 𝑇𝑛−1𝑥 leads to prob-
able predictions about 𝑇𝑛𝑥. On the other hand, if 𝑇 is very chaotic, the past orbit
has little or no influence on the future, and does not allow one to make reasonable
conjectures on 𝑇𝑛. The purpose of this section is to make these ideas rigorous and
mathematically precise.

8.1 Entropy of a partition

A partition of a probability space (𝑋,A, 𝜇) is a finite of countable infinite collection
of pairwise disjoint measurable subsets of 𝑋 whose union covers 𝑋 . We will denote
such a partition by 𝜉 = {𝐴1, . . . , 𝐴𝑟} or 𝜉 = {𝐴1, 𝐴2, . . . }. From the probabilistic point
a view, a partition is a discrete random variable, taking values either in a finite set
{1, . . . , 𝑟} or in ℕ.

For a partition 𝜉, we denote𝜎(𝜉) the𝜎−algebra generated by 𝜉. The sets 𝐴1, 𝐴2, . . .
of the partition are called its atoms. For 𝑥 ∈ 𝑋 , we denote by [𝑥]𝜉 the element of the
partition that contains 𝑥. A partition 𝜂 is called a refinment of 𝜉 if each atom of 𝜉 is a
union of atoms of 𝜂. We then write 𝜉 ≤ 𝜂. The common refinment of two partitions 𝜉
and 𝜂 is the joint partition 𝜉∨𝜂, which consists of all sets of the form 𝐴∩𝐵, 𝐴 ∈ 𝜉, 𝐵 ∈ 𝜂.

A partition 𝜉 = {𝐴1, 𝐴2, . . . } of a probability space may be thought as giving the
possible outcomes 1, 2, . . . of an experiment, with the probability of outcome 𝑖 being
𝜇(𝐴𝑖). We can therefore associate to 𝜉 a number 𝐻 (𝜉) describing the amount of un-
certainty about the outcome of the experience.

Definition 8.1. Let (𝑋,A, 𝜇) be a probability space, and 𝜉 = {𝐴1, 𝐴2, . . . } be a
partition of 𝑋 . The entropy of 𝜉, denoted 𝐻 (𝜉), defined by

𝐻 (𝜉) = −
∑︁
𝑖≥1

𝜇(𝐴𝑖) log2(𝜇(𝐴𝑖))

with the convention that 0 log 0 = 0.

For two measurable subsets 𝐴, 𝐵 ∈ A, the conditional measure of 𝐴 with respect
to 𝐵 is

𝜇(𝐴|𝐵) = 𝜇(𝐴 ∩ 𝐵)
𝜇(𝐵)
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and describes the probability of the event 𝐴 happening assuming that 𝐵 has occured.
This idea readily transposes to partitions.

Definition 8.2. Let (𝑋,A, 𝜇) be a probability space, with two partitions 𝜉 =

{𝐴1, 𝐴2, . . . } and 𝜂 = {𝐵1, 𝐵2, . . . }. The conditional entropy of 𝜉 given 𝜂, denoted
𝐻 (𝜉 |𝜂), is the number

𝐻 (𝜉 |𝜂) =
∑︁
𝑗≥1

𝜇(𝐵 𝑗)
(
−
∑︁
𝑖≥1

𝜇(𝐴𝑖 |𝐵 𝑗) log2(𝜇(𝐴𝑖 |𝐵 𝑗))
)
.

This formula should be viewed as a weighted average of entropies of the partition
𝜉 conditioned on the individual atoms of 𝜂.

As in probability theory, we will say 𝜉 and 𝜂 are independent if𝜇(𝐴∩𝐵) = 𝜇(𝐴)𝜇(𝐵)
for all 𝐴 ∈ 𝜉, 𝐵 ∈ 𝜂.

Let us establish the first basic properties of entropy, that will be useful in the se-
quel.

Proposition 8.3. Let (𝑋,A, 𝜇) be a probability space, with three partitions 𝜉,
𝜂 and 𝛾. Then the following holds.

(i) 𝐻 (𝜉) ≥ 0, and 𝐻 (𝜉) = 0 if and only if 𝜇(𝐴) = 1 for some atom 𝐴 ∈ 𝜉.

(ii) If |𝜉 | = 𝑟, 𝐻 (𝜉) ≤ log(𝑟) and 𝐻 (𝜉) = log(𝑟) if and only if 𝜇(𝐴𝑖) = 1
𝑟

for all
𝐴𝑖 ∈ 𝜉.

(iii) 𝐻 (𝜉 ∨ 𝜂) = 𝐻 (𝜂) + 𝐻 (𝜉 |𝜂).

(iv) 𝐻 (𝜉) ≥ 𝐻 (𝜉 |𝜂), and moreover 𝐻 (𝜉 |𝜂) ≥ 𝐻 (𝜉 |𝜂 ∨ 𝛾).

(v) 𝐻 (𝜉 |{𝑋}) = 𝐻 (𝜉) and 𝐻 (𝜉 |𝜉) = 0.

(vi) 𝜉 and 𝜂 are independent if and only if 𝐻 (𝜉 ∨ 𝜂) = 𝐻 (𝜉) + 𝐻 (𝜂) if and only
if 𝐻 (𝜉 |𝜂) = 𝐻 (𝜉).

(vii) If 𝑇 : 𝑋 −→ 𝑋 is measure-preserving, then 𝐻 (𝑇−1𝜉) = 𝐻 (𝜉) and
𝐻 (𝑇−1𝜉 |𝑇−1𝜂) = 𝐻 (𝜉 |𝜂).

Proof. (i) The function 𝑥 ↦−→ 𝑥 log(𝑥) is negative on [0, 1], so 𝜇(𝐴𝑖) log2(𝜇(𝐴𝑖) ≤ 0 for
all 𝑖 ≥ 1. Hence 𝐻 (𝜉) ≥ 0. If 𝜇(𝐴) = 1 for some 𝐴 ∈ 𝜉, then all other atoms of 𝜉
has measure 0, yielding 𝐻 (𝜉) = −𝜇(𝐴) log2(𝜇(𝐴)) = 0. Conversely, if 𝜇(𝐴) < 1 for all
𝐴 ∈ 𝜉, then all terms in 𝐻 (𝜉) give a non-trivial contribution, so 𝐻 (𝜉) > 0.
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(ii) If 𝜑(𝑥) = 𝑥 log(𝑥), then one has

1
𝑟

log
(
1
𝑟

)
= 𝜑

(
1
𝑟

)
= 𝜑

( 𝑟∑︁
𝑖=1

𝜇(𝐴𝑖)
1
𝑟

)
≤

𝑟∑︁
𝑖=1

1
𝑟
𝜑(𝜇(𝐴𝑖)) =

1
𝑟

𝑟∑︁
𝑖=1

𝜇(𝐴𝑖) log(𝜇(𝐴𝑖))

by Jensen’s inequality which applies since𝜑 is convex. Thus log(𝑟) ≥ −
𝑟∑︁
𝑖=1

𝜇(𝐴𝑖) log(𝜇(𝐴𝑖)) =

𝐻 (𝜉). Moreover Jensen’s inequality is an equality if and only if 𝜇(𝐴𝑖) = 1
𝑟

for all 𝐴𝑖 ∈ 𝜉.
(iii) By definition, we have

𝐻 (𝜉 |𝜂) + 𝐻 (𝜂) =
∑︁
𝑗≥1

𝜇(𝐵 𝑗)
(
−
∑︁
𝑖≥1

𝜇(𝐴𝑖 |𝐵 𝑗) log2(𝜇(𝐴𝑖 |𝐵 𝑗))
)
−
∑︁
𝑗≥1

𝜇(𝐵 𝑗) log2(𝜇(𝐵 𝑗))

=
∑︁
𝑗≥1

𝜇(𝐵 𝑗)
(
− log2(𝜇(𝐵 𝑗)) −

∑︁
𝑖≥1

𝜇(𝐴𝑖 |𝐵 𝑗) log2(𝜇(𝐴𝑖 |𝐵 𝑗))
)

= −
∑︁
𝑗≥1

(
𝜇(𝐵 𝑗) log2(𝜇(𝐵 𝑗)) +

∑︁
𝑖≥1

𝜇(𝐵 𝑗)𝜇(𝐴𝑖 |𝐵 𝑗) log2(𝜇(𝐴𝑖 |𝐵 𝑗))
)

and note that 𝜇(𝐵 𝑗) =
∑︁
𝑖≥1

𝜇(𝐵 𝑗 |𝐴𝑖)𝜇(𝐴𝑖) =
∑︁
𝑖≥1

𝜇(𝐴𝑖∩𝐵 𝑗), for all 𝑗 ≥ 1. It thus follows

that

𝐻 (𝜉 |𝜂) + 𝐻 (𝜂) = −
∑︁
𝑗≥1

(∑︁
𝑖≥1

𝜇(𝐴𝑖 ∩ 𝐵 𝑗) log2(𝜇(𝐵 𝑗)) +
∑︁
𝑖≥1

𝜇(𝐴𝑖 ∩ 𝐵 𝑗) log2(𝜇(𝐴𝑖 |𝐵 𝑗))
)

= −
∑︁
𝑗≥1

∑︁
𝑖≥1

𝜇(𝐴𝑖 ∩ 𝐵 𝑗) log2(𝜇(𝐴𝑖 ∩ 𝐵 𝑗))

= 𝐻 (𝜉 ∨ 𝜂)

as claimed.
(iv) To come.
(v) The first point follows from 𝜇(𝑋) = 1 and the second from 𝜇(𝐴𝑖 |𝐴 𝑗) = 0 if 𝑖 ≠ 𝑗.
(vi) We show that 𝜉 and 𝜂 are independent if and only if 𝐻 (𝜉 |𝜂) = 𝐻 (𝜉).
=⇒ : Suppose 𝜉 and 𝜂 are independent. Then one computes that

𝐻 (𝜉 |𝜂) =
∑︁
𝑗≥1

𝜇(𝐵 𝑗)
(
−
∑︁
𝑖≥1

𝜇(𝐴𝑖 |𝐵 𝑗) log2(𝜇(𝐴𝑖 |𝐵 𝑗))
)
= 𝐻 (𝜉)

∑︁
𝑗≥1

𝜇(𝐵 𝑗) = 𝐻 (𝜉)

as claimed.
(vii) Obvious. □
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Let’s now go back to ergodic theory.

Definition 8.4. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.
Its entropy with respect to a partition 𝜉 is the number

ℎ𝜇 (𝑇, 𝜉) = lim
𝑛→∞

1
𝑛
𝐻

( 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
.

The entropy of the system is then ℎ𝜇 (𝑇) = sup
𝜉
ℎ𝜇 (𝑇, 𝜉).

To see ℎ𝜇 (𝑇, 𝜉) is well-defined, we appeal Fekete’s lemma, which assures that if
(𝑎𝑛)𝑛∈ℕ is a subadditive sequence, then lim

𝑛→∞
𝑎𝑛

𝑛
exists and equals inf

𝑛∈ℕ

𝑎𝑛

𝑛
. In our case

we denote then

𝑎𝑛 = 𝐻

( 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
for 𝑛 ∈ ℕ. A combination of (iii) and (iv) in Proposition 8.3 shows that 𝐻 (𝜉 ∨ 𝜂) ≤
𝐻 (𝜉) + 𝐻 (𝜂), so we have

𝑎𝑛+𝑚 = 𝐻

( 𝑛+𝑚−1∨
𝑖=0

𝑇−𝑖𝜉

)
≤ 𝐻

( 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
+ 𝐻

( 𝑛+𝑚−1∨
𝑖=𝑛

𝑇−𝑖𝜉

)
= 𝐻

( 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
+ 𝐻

( 𝑚−1∨
𝑖=0

𝑇−𝑖𝜉

)
= 𝑎𝑛 + 𝑎𝑚

where the third equality follows from Proposition 8.3(vii). Hence ℎ𝜇 (𝑇, 𝜉) is well-
defined by Fekete’s lemma.

We now prove a more convenient formula to use for computations.

Theorem 8.5. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system, and 𝜉 be a par-
tition of 𝑋 . Then it holds that

ℎ𝜇 (𝑇, 𝜉) = lim
𝑛→∞

𝐻

(
𝑇−𝑛𝜉

���� 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
.

Proof. The first thing to check is that the limit appearing in the statement indeed ex-

ists. Introduce then 𝑤(𝑛) ··= 𝐻
(
𝑇−𝑛𝜉

���� 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
. By points (iii) and (vii) of Proposition

67



Ergodic theory 8.1 Entropy of a partition

8.3, one gets

𝑤(𝑛 + 1) = 𝐻
(
𝑇−(𝑛+1)𝜉

���� 𝑛∨
𝑖=0
𝑇−𝑖𝜉

)
≤ 𝐻

(
𝑇−(𝑛+1)𝜉

���� 𝑛∨
𝑖=1
𝑇−𝑖𝜉

)
= 𝐻

(
𝑇−𝑛𝜉

���� 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
= 𝑤(𝑛)

so (𝑤(𝑛))𝑛∈ℕ is decreasing and bounded below, hence its limit exists, as was to be
shown. Now we observe that

𝐻

( 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
= 𝐻

(
𝑇−(𝑛−1)𝜉 ∨

𝑛−2∨
𝑖=0
𝑇−𝑖𝜉

)
= 𝐻

( 𝑛−2∨
𝑖=0
𝑇−𝑖𝜉

)
+ 𝐻

(
𝑇−(𝑛−1)𝜉

���� 𝑛−2∨
𝑖=0
𝑇−𝑖𝜉

)
= 𝐻

( 𝑛−2∨
𝑖=0
𝑇−𝑖𝜉

)
+ 𝑤(𝑛 − 1)

= · · · = 𝑤(0) + · · · + 𝑤(𝑛 − 1)

so we can conclude that ℎ𝜇 (𝑇, 𝜉) = lim
𝑛→∞

1
𝑛
𝐻

( 𝑛−1∨
𝑖=0
𝑇−𝑖𝜉

)
= lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑘=0

𝑤(𝑘) = lim
𝑛→∞

𝑤(𝑛)

by Cesaro’s theorem. □

We can therefore use this result to obtain a first explicit value for the entropy of a
measure-preserving system.

Example 8.6. Consider a Bernoulli shift, i.e. 𝑋 = {0, 1}ℕ∪{0}, 𝑇 is the left-shift, and
𝜇 = 𝜈ℕ∪{0} where 𝜈({0}) = 𝜈({1}) = 1

2 . Let 𝜉 be the partition of 𝑋 into two pieces
[0]0, [1]0. The first one consists of all sequences beginning with 0 and the second one
contains all sequences beginning by 1. Then 𝑇−𝑛𝜉 = {[0]𝑛, [1]𝑛}, and this partition is

independent of
𝑛−1∨
𝑖=0
𝑇−𝑖𝜉, so Theorem 8.5 yields

ℎ𝜇 (𝑇, 𝜉) = lim
𝑛→∞

𝐻 (𝑇−𝑛𝜉) = 𝐻 (𝜉) = log(2)

using Proposition 8.3(ii) for the last equality.
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Note that in the previous example we just computed the entropy with respect to
a particular partition, and we should do a similar computation for every countable
partition of the space to get the entropy ℎ𝜇 (𝑇). The next theorem, that we will take
for granted, tells us in fact it is not necessary if we are in a good situation.

Theorem 8.7. Let (𝑋,A, 𝜇, 𝑇) be a measure-preserving system.

If 𝜉 generates A, meaning that 𝜎
( ∞∨
𝑖=0
𝑇−𝑖𝜉

)
= A, then ℎ𝜇 (𝑇) = ℎ𝜇 (𝑇, 𝜉).

Lastly, let us investigate how entropy behaves with respect to factors and exten-
sions.

Proposition 8.8. Let (𝑌,B, 𝜈, 𝑆) be a factor of (𝑋,A, 𝜇, 𝑇).
It holds that ℎ𝜈 (𝑆) ≤ ℎ𝜇 (𝑇).

Proof. Let 𝜉 be a partition of𝑌 , and denote 𝜋 : 𝑋 −→ 𝑌 the factor map. Then 𝜋−1(𝜉) is
a partition of 𝑋 , so ℎ𝜇 (𝑇,𝜋−1(𝜉)) ≤ ℎ𝜇 (𝑇). On the other hand, one can check directly
that

ℎ𝜇 (𝑇,𝜋−1(𝜉)) = ℎ𝜈 (𝑆, 𝜉)
and it follows that ℎ𝜈 (𝑆) ≤ ℎ𝜇 (𝑇). □

The direct consequence of this proposition is that entropy is an invariant of measure-
preserving system.

Corollary 8.9. If (𝑋,A, 𝜇, 𝑇) and (𝑌,B, 𝜈, 𝑆) are isomorphic, then ℎ𝜇 (𝑇) =

ℎ𝜈 (𝑆).

Proof. If 𝑋 and 𝑌 are isomorphic, there is two factor maps 𝜋 : 𝑋 −→ 𝑌 and 𝜑 : 𝑌 −→
𝑋 , so Proposition 8.8 implies ℎ𝜈 (𝑆) ≤ ℎ𝜇 (𝑇) and ℎ𝜇 (𝑇) ≤ ℎ𝜈 (𝑆), giving the claim. □
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